高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (12): 2629-2637.doi: 10.7503/cjcu20200725
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
刘天硕1, 龙世川1, 姚志轶2, 师佳1, 杨扬1(), 洪文晶1(
)
收稿日期:
2020-09-30
出版日期:
2020-12-10
发布日期:
2020-12-09
通讯作者:
洪文晶
E-mail:yangyang@xmu.edu.cn;whong@xmu.edu.cn
作者简介:
杨 扬, 男, 博士, 副教授, 主要从事分子电子器件和纳米间隔的表界面物理化学研究. E-mail: 基金资助:
LIU Tianshuo1, LONG Shichuan1, YAO Zhiyi2, SHI Jia1, YANG Yang1(), HONG Wenjing1(
)
Received:
2020-09-30
Online:
2020-12-10
Published:
2020-12-09
Contact:
HONG Wenjing
E-mail:yangyang@xmu.edu.cn;whong@xmu.edu.cn
Supported by:
摘要:
有机分子层的电输运特性是分子电子学研究的重要问题. 镓铟合金电极技术具有成结率高、 可靠性好及操作简便等优点, 近年来已成为测量单分子层电输运的常用表征手段. 本文介绍了镓铟合金电极技术的基本原理及测试方法, 综述了该技术所带来的一些前沿成果, 并对其目前存在的优势、 缺点及未来发展前景进行了分析.
中图分类号:
刘天硕, 龙世川, 姚志轶, 师佳, 杨扬, 洪文晶. 基于镓铟合金电极的单分子层电输运研究进展[J]. 高等学校化学学报, 2020, 41(12): 2629-2637.
LIU Tianshuo, LONG Shichuan, YAO Zhiyi, SHI Jia, YANG Yang, HONG Wenjing. Progress of Charge Transport Through Self-assembled Monolayers by Employing Eutectic Gallium-Indium Technique[J]. Chemical Journal of Chinese Universities, 2020, 41(12): 2629-2637.
Fig.1 Equipment structure and a typical EGaIn junction(A) Schematic diagram of an EGaIn-testing equipment(the red dash circle highlights the SAMs junction); (B) optical image of the EGaIn junction; (C) schematic diagram of the EGaIn junction with SC16H34 SAMs.
Fig.2 Photographs captured during the preparation of the EGaIn junction[30]The preparation process of the EGaIn junction in ambient conditions and a ?owbox with a 2.5%(volume fraction) O2 atmosphere and relative humidity less than 15%. The yellow scale bar represents 500 μm. Copyright 2016, American Chemical Society.
Fig.3 Electrical characterization of anthraquinone molecular wires with different structures[44](A) AuMica and EGaIn; (B) AuTS and EGaIn; (C) AuMica and AuCP-AFM; (D) the structures of the molecules studied in the experiment. Different colors represent test results for AQ(black), AC(red), APh(cyan), ABr(blue), ATTF(pink), and TCNAQ(yellow) in (D). Copyright 2019, The Royal Society of Chemistry.
Fig.4 Sketch of the SAMs devices and the result of experiments[45](A) Structures of molecules with different cores of BDT-1, BDT-2, BDT-3, and AQ, which have else linearly(blue) or cross-conjugated(red) pathway for electron transport; (B) schematic of Au/SAM//EGaIn junction with the molecules in(A); (C) normalized low bias conductance of BDT-1(salmon), BDT-2(purple), BDT-3(pink) and AQ(grey). Copyright 2018, The Royal Society of Chemistry.
Fig.5 Schematic illustration of Molecular Junctions and its equivalent circuit[54](A) Structures of SAMs with four different cores of BT, BPh, FH, and FO; (B) Classical parallel resistors based on Kirchhoff’s law(left), the molecular quantum circuit and its equivalent diagram, which obeys a different electrical rule compared with its counterpart in the macroscale electrical circuit(right). Copyright 2020, Wiley-VCH.
Fig.6 EGaIn technique combined with other experimental methods(A) Schematic of a typical SAMs-based microchip, where PDMS fixes the EGaIn junction; (B) time traces of different plasmon emitters. The red lines show the threshold(24000 counts/s) between the two states(on and off)[57]; (C) schematic diagram of thermoelectric molecular junction based on EGaIn electrodes; (D) plots of theoretical Seebeck coefficient and the experimental values as a linear function of the length of molecules[60](A, B) Copyright 2016, Springer Nature; (C, D) Copyright 2019, The Royal Society of Chemistry.
26 | Weiss E. A., Kaufman G. K., Kriebel J. K., Li Z. F., Schalek R., Whitesides G. M., Langmuir, 2007, 23(19), 9686—9694 |
27 | Weiss E. A., Chiechi R. C., Kaufman G. K., Kriebel J. K., Li Z. F., Duati M., Rampi M. A., Whitesides G. M., J. Am. Chem. Soc., 2007, 129(14), 4336—4349 |
28 | Yuan L., Jiang L., Thompson D., Nijhuis C. A., J. Am. Chem. Soc., 2014, 136(18), 6554—6557 |
29 | Nijhuis C. A., Reus W. F., Barber J. R., Whitesides G. M., J. Phys. Chem. C, 2012, 116(26), 14139—14150 |
30 | Carlotti M., Degen M., Zhang Y. X., Chiechi R. C., J. Phys. Chem. C, 2016, 120(36), 20437—20445 |
31 | Khan M. R., Trlica C., So J. H., Valeri M., Dickey M. D., ACS Appl. Mater. Inter., 2014, 6(24), 22467—22473 |
32 | Wimbush K. S., Fratila R. M., Wang D., Qi D., Liang C., Yuan L., Yakovlev N., Loh K. P., Reinhoudt K. P., Velders A. H., Nanoscale, 2014, 6, 11246—11258 |
33 | Rothemund P., Morris B. C., Suo Z., Whitesides G. M., Chem. Mater., 2018, 30, 129—137 |
34 | Jiang L., Sangeeth C. S. S., Wan A., Vilan A., Nijhuis C. A., J. Phys. Chem. C, 2015, 119, 960—969 |
35 | Baghbanzadeh M., Simeone F. C., Bowers C. M., Liao K. C., Thuo M., Baghbanzadeh M., Miller M. S., Carmichael T. B., Whitesides G. M., J. Am. Chem. Soc., 2014, 136, 16919—16925 |
36 | Carlotti M., Soni S., Kumar S., Ai Y., Sauter E., Zharnikov M., Chiechi R. C., Angew. Chem. Int. Ed., 2018, 57, 15681—15685 |
37 | Baghbanzadeh M., Bowers M., Rappoport D., Zaba T., Gonidec M., Al⁃Sayah M. H., Cyganik P., Aspuru⁃Guzik A., Whitesides G. M., Angew. Chem., 2015, 49, 14956—14960 |
38 | Muller C. J., van Ruitenbeek J. M., de Jongh L. J., Physica C,1992, 191, 485—504 |
39 | Cafferty B. J., Yuan L., Baghbanzadeh M., Rappoport D., Beyzavi M. H., Whitesides G. M., Angew. Chem. Int. Ed., 2019, 58, 8097—8102 |
40 | Kumar K. S., Pasula R. R., Lim S., Nijhuis C. A., Adv. Mater., 2016, 28, 1824—1830 |
41 | Sangeeth C. S. S., Wan A., Nijhuis C. A., J. Am. Chem. Soc., 2014, 136(31), 11134—11144 |
42 | Garner M. H., Li H. X., Chen Y., Su T. A., Shangguan Z. C., Paley D. W., Liu T. F., Ng F., Li H. X., Xiao S. X., Nuckolls C., Venkataraman L., Solomon G. C., Nature,2018, 558, 415—419 |
43 | Zhang Y. P., Chen L. C., Zhang Z. Q., Cao J. J., Tang C., Liu J. Y., Duan L. L., Huo Y., Shao X. F., Hong W. J., Zhang H. L., J. Am. Chem. Soc., 2018, 140(21), 6531—6535 |
44 | Carlotti M., Soni S., Qiu X. K., Sauter E., Zharnikov M., Chiechi R. C., Nanoscale Adv., 2019, 1, 2018—2028 |
45 | Zhang Y. X., Ye G., Soni S., Qiu X. K., Krijger T. L., Jonkman H. T., Carlotti M., Sauter E., Zharnikov M., Chiechi R. C., Chem. Sci., 2018, 9, 4414—4423 |
46 | Nijhuis C. A., Reus W. F., Whitesides G. M., J. Am. Chem. Soc., 2010, 132(51), 18386—18401 |
47 | Nijhuis C. A., Reus W. F., Siegel A. C., Whitesides G. M., J. Am. Chem. Soc., 2011, 133(39), 15397—15411 |
48 | Yoon H. J., Liao K. C., Lockett M. R., Kwok S. W., Baghbanzadeh M., Whitesides G. M., J. Am. Chem. Soc., 2014, 136, 17155—17162 |
49 | Chen X. P., Roemer M., Yuan L., Du W., Thompson D., del Barco E., Nijhuis C. A., Nat. Nanotech., 2017, 12, 797—803 |
50 | Yuan L., Wang L., Garrigues A. R., Jiang L., Nijhuis C. A., Nat. Nanotech., 2018, 13(4), 322—329 |
51 | Migliore A., Schiffa P., Nitzana A., Phys. Chem. Chem. Phys., 2012, 14, 13746—13753 |
52 | Baghbanzadeh M., Belding L., Yuan L., Park J., Al⁃Sayah M. H., Bowers C. M., Whitesides G. M., J. Am. Chem. Soc., 2019,141, 8969—8980 |
53 | Wang L. J., Yuan L., Jiang L., Yu X. J., Cao L., Nijhuis C. A., J. Phys. Chem. C, 2019, 123, 19759—19767 |
54 | Soni S., Ye G., Zheng J. T., Zhang Y. X., Asyuda A., Zharnikov M., Hong W. J., Chiechi R. C., Angew. Chem. Int. Ed., 2020, 59, 14308—14312 |
55 | Han Y. M., Nickle C., Zhang Z., Astier H. P. A. G., Duffin T. J., Qi D. C., Wang Z., Barco E. D., Thompson D., Nijhuis C. A., Nat. Mater., 2020, 19, 843—848 |
56 | Xin N., Guan J. X., Zhou C. G., Chen X. J., Gu C. H., Li Y., Ratner M. A., Nitzan A., Stoddart J. F., Guo X. F., Nat. Rev. Phys., 2019, 1, 211—230 |
57 | Du W., Wang T., Chu H. S., Wu L., Liu R. R., Sun S., Phua W. K., Wang L. J., Tomczak N., Nijhuis C. A., Nat. Photon., 2016, 10, 274—280 |
58 | Du W., Han Y. M., Hu H. T., Chu H. S., Annadata H. V., Wang T., Tomczak N., Nijhuis C. A., Nano Lett., 2019, 19, 4634—4640 |
59 | Park S., Yoon H. J., Nano Lett., 2018, 18(12), 7715—7718 |
60 | Kang S., Park S., Kang H., Cho S. J., Song H., Yoon H. J., Chem. Commun., 2019, 55, 8780—8783 |
61 | Dickey M. D., Chiechi R. C., Larsen R. J., Weiss E. A., Weitz D. A., Adv. Funct. Mater., 2008, 18, 1097—1104 |
62 | Wan A., Sangeeth C. S. S., Wang L. J., Yuan L., Jiang L., Nijhuis C. A., Nanoscale, 2015, 7, 19547—19556 |
63 | Byeon S. E., Kim M., Yoon H. J., ACS Appl. Mater. Inter., 2017, 9, 40556—40563 |
1 | Xiang D., Wang X. L., Jia C. C., Lee T., Guo X. F., Chem. Rev., 2016, 116, 4318—4440 |
2 | Jia C. C., Migliore A., Xin N., Huang S. Y., Wang J. Y., Yang Q., Wang S. P., Chen H. L., Wang D. M., Feng B. Y., Liu Z. R., Zhang G. Y., Qu D., Tian H., Ratner M. A., Xu H. Q., Nitzan A., Guo X. F., Science, 2016, 352(6292), 1443—1445 |
3 | Huang C. C., Rudnev A. V., Hong W. J., Wandlowski T., Chem. Soc. Rev., 2015, 44(4), 889—901 |
4 | Zhan C., Wang G., Zhang X. G., Li Z. H., Wei J. Y., Si Y., Yang Y., Hong W. J., Tian Z. Q., Angew. Chem. Int. Ed., 2019, 58, 14534—14538 |
5 | Vilan A , Aswal D , Cahen D., Chem. Rev., 2017, 117(5), 4248—4286 |
6 | Abraham U., Mrs Bulletin, 1995, 20(6), 46—51 |
7 | Shen P. C., Huang M. L., Qian J. Y., Li J. S., Ding S. Y., Zhou X. S., Xu B., Zhao Z. J., Tang B. Z., Angew. Chem. Int. Ed., 2020, 59, 4581—4588 |
8 | Xu X. N., Han B., Yu X., Zhu Y. Y., Acta Chim. Sinica, 2019, 77(6), 485—499(许晓娜, 韩宾, 于曦, 朱艳英. 化学学报, 2019, 77(6), 485—499) |
9 | Kushmerick J. G., Holt D. B., Yang J. C., Naciri J., Moore M. H., Shashidhar R., Phys. Rev. Lett., 2002, 89(8), 086802 |
10 | Zhu Z. H., Daniel T. A., Maitani M., Cabarcos O. M., Allara D. L., Winograd N., J. Am. Chem. Soc., 2006, 128(42), 13710—13719 |
11 | Smith C. E., Odoh S. O., Ghosh S., Gagliardi L., Cramer C. J., Frisbie C. D., J. Am. Chem. Soc., 2015, 137, 15732—15741 |
12 | Jia C.C., Famili M., Carlotti M., Liu Y., Wang P, Grace I. M., Feng Z., Wang Y., Zhao Z., Ding M., Xu X., Wang C., Lee S. J., Huang Y., Chiechi R. C., Lambert C. J., Duan X. F., Sci. Adv., 2018, 4(10), eaat8237 |
13 | Zhao S. Q., Wu Q. Q., Pi J. C., Liu J. Y., Zheng J. T., Sadeghi, H., Wei J. Y., Li R. H., Hou S. J., Yang Y., Jia S., Chen Z. B., Xiao Z. Y., Lambert C., Hong W. J., Sci. Adv., 2020,6, eaba6714 |
14 | Lee J., Chang H., Kim S., Bang G. S., Lee H., Angew. Chem. Int. Ed., 2009, 48(45), 8501—8504 |
15 | Chabinyc M. L., Chen X. X., Holmlin R. E., Jacobs H., Skulason H., Frisbie C. D., Mujica V., Ratner M. A., Rampi M. A., Whitesides G. M., J. Am. Chem. Soc., 2002, 124(39), 11730—11736 |
16 | Chiechi R. C., Weiss E. A., Dickey M. D., Whitesides G. M., Angew. Chem. Int. Ed., 2008, 47(1), 142—144 |
17 | Vilan A., J. Phys. Chem. C, 2007, 111(11), 4431—4444 |
18 | Nerngchamnong N., Yuan L., Qi D. C., Li J., Thompson D., Nijhuis C. A., Nat. Nanotech., 2013, 8(2), 113—118 |
19 | Cuevas J. C., Scheer E., Molecular Electronics: An Introduction to Theory and Experiment, World Scientific, Singapore, 2010 |
20 | Nitzan A., Ratner M. A., Science, 2003, 300(5624), 1384—1389 |
21 | Wu S. M., Electrical Conductance of Single Conjugated Oligomers, Basel, University of Basel, 2010 |
22 | Simmons J. G., J. Appl. Phys., 1963, 34(6), 1793 |
23 | Yang Y., Liu J. Y., Yan R. W., Wu D. Y., Tian Z. Q., Chem. J. Chinese Universities, 2015, 36(1), 9—23(杨扬, 刘俊扬, 晏润文, 吴德印, 田中群. 高等学校化学学报, 2015, 36(1), 9—23) |
24 | Wagner P., Hegner M., Guentherodt H. J., Semenza G., Langmuir, 1995, 11, 3867—3875 |
25 | Zhang J. L., Yang F., Zheng W. J., Bai Y., Ouyang J. M., Process. Chem., 2005, 2, 25—30(张俊苓, 杨芳, 郑文杰, 白燕, 欧阳健明. 化学进展, 2005, 2, 25—30) |
[1] | 韩宾, 于曦, 胡文平. 二茂铁自组装分子结中电荷隧穿与跳跃传输的机理研究[J]. 高等学校化学学报, 2019, 40(2): 298-305. |
[2] | 杨扬, 刘俊扬, 晏润文, 吴德印, 田中群. 金属/分子/金属结的电子输运机理与表征[J]. 高等学校化学学报, 2015, 36(1): 9-23. |
[3] | 郭继东, 邢巍, 陆天虹, 杨辉. 短杆菌肽在十八烷基硫醇自组装单层膜上的通道行为[J]. 高等学校化学学报, 2002, 23(5): 958-960. |
[4] | 王俊, 曾百肇, 方程, 周性尧. 表面活性剂作用下谷胱甘肽单分子膜的离子门响应[J]. 高等学校化学学报, 2000, 21(10): 1552-1554. |
[5] | 崔晓丽, 蒋殿录, 李俊新, 刁鹏, 童汝亭, 王心葵. 硫醇在金电极上的SA单分子层膜的电化学研究[J]. 高等学校化学学报, 1999, 20(5): 800-802. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||