高等学校化学学报 ›› 2010, Vol. 31 ›› Issue (7): 1291.

• 研究论文 • 上一篇    下一篇

静电纺丝技术制备Gd3Ga5O12∶Eu3+多孔发光纳米带

刘莹, 王进贤, 董相廷, 刘桂霞   

  1. 长春理工大学化学与环境工程学院, 长春 130022
  • 收稿日期:2009-11-30 出版日期:2010-07-10 发布日期:2010-07-10
  • 通讯作者: 董相廷, 男, 教授, 博士, 博士生导师, 主要从事纳米材料研究. E-mail: dongxiangting888@yahoo.com.cn
  • 基金资助:

    国家自然科学基金项目(批准号: 50972020)、吉林省科技发展计划重大项目(批准号: 20070402, 20060504)、教育部科学技术研究重点项目(批准号: 207026)、长春市科技计划项目(批准号: 2007045)和吉林省教育厅“十一五”科学技术研究项目(批准号: 2007-45, 2006JYT05)资助.

Fabrication of Gd3Ga5O12:Eu3+ Porous Luminescent Nanobelts via Electrospinning

LIU Ying, WANG Jin-Xian, DONG Xiang-Ting*, LIU Gui-Xia   

  1. School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2009-11-30 Online:2010-07-10 Published:2010-07-10
  • Contact: DONG Xiang-Ting. E-mail: dongxiangting888@yahoo.com.cn
  • Supported by:

    国家自然科学基金项目(批准号: 50972020)、吉林省科技发展计划重大项目(批准号: 20070402, 20060504)、教育部科学技术研究重点项目(批准号: 207026)、长春市科技计划项目(批准号: 2007045)和吉林省教育厅“十一五”科学技术研究项目(批准号: 2007-45, 2006JYT05)资助.

摘要:

采用静电纺丝技术制备了PVP/[Gd(NO3)3+Ga(NO3)3+Eu(NO3)3]复合纳米带, 将其进行热处理, 得到了Gd3Ga5O12:Eu3+(简称GGG:Eu3+)多孔发光纳米带. 采用XRD, SEM, TEM, TG-DTA, FTIR和荧光光谱等技术对样品进行了表征. PVP/[Gd(NO3)3+Ga(NO3)3+Eu(NO3)3]复合纳米带为非晶态, 经800 ℃焙烧8 h后, 获得了单相石榴石型的GGG:Eu3+纳米带, 属于立方晶系, 空间群为Ia3d. 复合纳米带表面光滑, 尺寸均一, 平均宽度约10 μm, 厚度约为100 nm, 彼此没有交联; 经800 ℃焙烧后GGG:Eu3+多孔纳米带平均宽度约2.5 μm, 厚度30 nm, 长度大于500 μm, 呈多孔网状多晶结构. 当焙烧温度高于700 ℃时, 复合纳米带中DMF、有机物和硝酸盐分解挥发完全, 总失重率为93.1%. 焙烧温度为800 ℃时, 生成了纯净的无机氧化物. 在254 nm的紫外光激发下, GGG:Eu3+纳米带发射出主峰位于591 nm的明亮红光, 属于Eu3+5D07F1跃迁. 对GGG:Eu3+纳米带形成机理进行了讨论.

关键词: GGG:Eu3+; 纳米带; 荧光粉; 静电纺丝技术

Abstract:

PVP/[Gd(NO3)3+Ga(NO3)3+Eu(NO3)3] composite nanobelts were prepared via electrospinning, and Gd3Ga5O12:Eu3+(denoted as GGG:Eu3+ for short) porous luminescent nanobelts were fabricated by calcination of the prepared composite nanobelts. The samples were characterized by XRD, SEM, TEM, TG-DTA, FTIR and fluorescence spectroscopy. XRD results show that the composite nanobelts are amorphous in structure, and pure phase GGG:Eu3+ nanobelts were obtained by calcination of the relevant composite nanobelts at 800 ℃ for 8 h and GGG:Eu3+ nanobelts belong to cubic system with space group Ia3d. SEM analysis indicates that the surface of as-prepared composite nanobelts is smooth, the widths of the composite fibers are in narrow range, and the mean width and thickness are ca. 10 μm and ca. 100 nm, respectively, and there are no cross-linkages among nanobelts. The width and thickness of GGG:Eu3+ nanobelts are ca. 2.5 μm and ca. 30 nm, respectively, and the length is greater than 500 μm. TEM analysis indicates that GGG:Eu3+ nanobelts possess porous, web-like and polycrystalline structure. TG-DTA analysis reveals that DMF, organic compounds and nitrate salts in the composite nanobelts are decomposed and volatilized totally, and the mass of the sample kept constant when sintering temperature was above 700 ℃, and the total mass loss percentage is 93.1%. FTIR analysis manifests that pure inorganic oxides are formed at 800 ℃. Fluorescence spectroscopy results show that GGG:Eu3+ nanobelts emit strong red emission centering at 591 nm under the excitation of 254 nm ultraviolet ray, which is attributed to the transition of 5D07F1 energy levels of Eu3+. The possible formation mechanism of the GGG:Eu3+ nanobelts was preliminarily discussed. This technique can be applied to fabricate other rare earth garnet-typed nanobelts.

Key words: GGG:Eu3+; Nanobelt; Phosphor; Electrospinning technique

TrendMD: