高等学校化学学报 ›› 2010, Vol. 31 ›› Issue (10): 2052.

• 研究论文 • 上一篇    下一篇

静电力驱动蛋白质在疏水蛋白表面的吸附

王泽方, 黄渝健, 牛宝龙, 李山, 王丹丹, 徐海津, 乔明强   

  1. 南开大学生命科学学院, 生物活性材料教育部重点实验室, 天津300071
  • 收稿日期:2009-12-17 出版日期:2010-10-10 发布日期:2010-10-10
  • 通讯作者: 乔明强, 男, 博士, 教授, 博士生导师, 主要从事真菌疏水蛋白、病原微生物功能基因组学和天然抗病原微生物生物活性物质的研究. E-mail: mingqiangqiao@yahoo.com.cn
  • 基金资助:

    教育部新世纪优秀人才支持计划(批准号: NCET-06-0212)和科技部中芬合作项目(批准号: 2006DFA32360)资助.

Adsorption of Protein on Hydrophobin Surface Driven by Electrostatic Force

WANG Ze-Fang, HUANG Yu-Jian, NIU Bao-Long, LI Shan, WANG Dan-Dan, XU Hai-Jin, QIAO Ming-Qiang*   

  1. Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300070, China
  • Received:2009-12-17 Online:2010-10-10 Published:2010-10-10
  • Contact: QIAO Ming-Qiang. E-mail: mingqiangqiao@yahoo.com.cn
  • Supported by:

    教育部新世纪优秀人才支持计划(批准号: NCET-06-0212)和科技部中芬合作项目(批准号: 2006DFA32360)资助.

摘要: 疏水蛋白是丝状真菌产生的一种外泌蛋白质, 它们可以在不同表面形成双亲性蛋白膜. 疏水蛋白也是一种优良的蛋白质固定化基质, 然而蛋白质在疏水蛋白表面吸附的驱动机制却是未知的. 本文系统研究了不同pH和离子浓度下蛋白质在疏水蛋白表面的吸附. 首先, 用石英晶体微天平技术研究了不同pH和离子浓度下, Ⅰ型疏水蛋白HGFI和Ⅱ型疏水蛋白HFBI在聚苯乙烯表面的吸附. 结果发现, pH和离子强度对HGFI在聚苯乙烯表面的吸附影响较大, 对HFBI的吸附影响与HGFI相比则较小; HGFI在聚苯乙烯表面主要形成的是弹性膜, 而HFBI在聚苯乙烯表面主要形成的是刚性膜. 随后又研究了不同pH和离子浓度下牛血清白蛋白(BSA)和亲和素(Avidin)在HGFI和HFB上吸附, 结果表明, pH和离子强度对BSA和Avidin在HGFI和HFB上吸附有显著影响, 说明BSA和Avidin在两种疏水蛋白上吸附的主要驱动力为静电力. 本文研究结果为实现疏水蛋白表面可控地固定蛋白质提供了理论指导.

关键词: 疏水蛋白, 弹性膜, 刚性膜, 静电力, 石英晶体微天平

Abstract: Hydrophobins are small secreted proteins produced by filamentous fungi, which can form an amphipathic membrane at various surfaces. Hydrophobins have been considered as excellent substrates for protein immobilization. However, the driven force for protein adsorption on hydrophobin surface is not clear. In this work, we systematically investigated the protein adsorption on hydrophobins at different pH and ionic strength. Firstly, the adsorption of class Ⅰ hydrophobin HGFI and class Ⅱ hydrophobin HFBI on the surfaces of polystyrene were investigated via quartz crystal microbalance with dissipation monitoring(QCM-D) at different pH and ionic strength. The results show that both pH and ionic strength have greater impacts on the adsorption of HGFI on polystyrene than that of HFBI. Moreover, HGFI can form soft films on the polystyrene, whereas HFBI formed very rigid films under the same conditions. The adsorption of BSA and avidin on the HGFI and HFBI were further investigated by using QCM-D at the same pH and ionic strength. The results indicate that adsorptions of BSA and avidin on the HGFI and HFBI are dramatically affected by both pH and ionic strength, suggesting that the major driving force dominating the protein adsorption on hydrophobin is the electrostatic force. This study provides a theoretical guide for a controllable immobilization of a protein on a hydrophobin surface.

Key words: Hydrophobin, Soft film, Rigid film, Electrostatic force, Quartz crystal microbalance

TrendMD: