高等学校化学学报

• 研究论文 • 上一篇    下一篇

三维Si3N4-BN陶瓷框架的原位燃烧合成以增强环氧复合材料导热性

曹欣鹏1, 3, 孟晴2, 戴浩宇1, 3, 江雷1, 3
  

  1. 1. 中国科学院理化技术研究所仿生智能界面科学实验室 2. 中国科学院理化技术研究所低温科学与技术全国重点实验室 3. 中国科学院大学未来技术学院
  • 收稿日期:2025-11-28 修回日期:2025-12-22 网络首发:2025-12-24 发布日期:2025-12-24
  • 通讯作者: 戴浩宇
  • 基金资助:
    中国国家自然科学基金(批准号: 92263205)资助

Three-Dimensional Si3N4-BN Ceramic Framework Prepared by In-Situ Combustion Synthesis for Thermal Conductivity Enhancement of Epoxy Composites

Xinpeng Cao1, 3, Qing Meng2, Haoyu Dai1, 3, Lei Jiang1, 3   

  1. 1. Laboratory of Bio-Inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences 2. State Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences 3. School of Future Technology, University of Chinese Academy of Sciences
  • Received:2025-11-28 Revised:2025-12-22 Online First:2025-12-24 Published:2025-12-24
  • Contact: Haoyu Dai
  • Supported by:
    Supported by the National Natural Science Foundation of China (No. 92263205)

摘要: 随着符合摩尔定律的高度集成柔性电子器件的快速发展, 对高效散热材料的需求日益增长, 聚合物基导热复合材料因而受到科学与工业界的广泛关注. 为满足导热材料对高热导率的要求, 在聚合物基体中构建连续, 高效的导热网络成为提升材料热管理性能的关键途径. 本研究提出一种基于原位燃烧合成的策略, 以低成本的Si, B2O3和α-Si3N4粉末为反应前驱体, 聚甲基丙烯酸甲酯(PMMA)作为造孔剂, 通过一步法快速制备出孔隙率可控的具有三维结构的Si3N4-BN陶瓷(3D-SNBN)框架. 随后, 采用真空抽滤法将环氧树脂(EP)浸渍填充至该多孔骨架中, 成功构建了高性能的3D-SNBN/EP复合材料. 实验结果表明, 即使在3D-SNBN框架负载量仅为57.9 vol%的条件下, 复合材料的热导率仍高达6.4 W·m-1·K-1, 相较纯环氧树脂(0.22 W·m-1·K-1)和传统采用随机分散Si3N4-BN填料的复合材料(0.86 W·m-1·K-1)分别提升了2809%和644%. 此外, 该复合材料在加热与冷却过程中均表现出优异的动态热响应行为, 展现出快速的升温与散热能力, 进一步验证了其在实际热管理场景中的可靠性与应用潜力. 本研究不仅开发了一种高性能, 可扩展的导热复合材料体系, 更为未来高导热聚合物基材料的设计与制备提供了普适性强, 工艺简便的技术路径.

关键词: 高热导率, 聚合物复合材料, 多孔Si3N4-BN陶瓷, 原位燃烧合成, 热管理

Abstract: Accompanied with the great progress on highly integrated soft electric devices consistent with the Moore’s law, the demand of heat management with high efficiency is increasing, which makes the polymer-based heat dissipating materials attract intensive interest from both scientific and industrial communities. Therefore, to meet the demand, the construction of thermal conduction network in the polymer matrix is essential to improve the thermal conductivity of polymer composites. Herein, a three-dimensional Si3N4-BN ceramic (3D-SNBN) framework was effectively prepared within one step by in-situ combustion synthesis using low-cost Si, B2O3 and α-Si3N4 as raw materials and polymethylmethacrylate (PMMA) as pore forming agent. High-performance epoxy composites (SNBN/EP) were then prepared by impregnating epoxy resin (EP) into the 3D-SNBN framework. The thermal conductivity of the composites with a 3D-SNBN framework loading of 57.9 vol% was as high as 6.4 W·m-1·K-1, which exhibited a significant enhancement of 2809% and 644% compared with pure EP (0.22 W·m-1·K-1) and epoxy composites with conventional randomly dispersed Si3N4-BN powders (0.86 W·m-1·K-1). In addition, the composites exhibited outstanding thermal behaviors during heating and cooling processes accordingly, which further demonstrates its reliability and wide applying potential in industrial heat management. The discovery not only provides a feasible material candidate for heat transfer in the future, but also offers a general strategy in high thermal conductive polymer matrix design and preparation.

Key words: High thermal conductivity, Polymer composites, Porous Si3N4-BN ceramic, In-situ combustion synthesis, Heat management

中图分类号: 

TrendMD: