高等学校化学学报

• 研究论文 • 上一篇    下一篇

旋转包覆法构筑高反射低导热型HGM@TiO2@ZnO核-壳-壳材料

齐文甲1,赵开庆2,吴刚2,吾麦尔·亚森1,童刚生23   

  1. 1. 上海工程技术大学化学化工学院

    2. 上海交通大学化学化工学院 3 上海航天设备制造总厂有限公司

  • 收稿日期:2025-07-04 修回日期:2025-08-20 网络首发:2025-09-11 发布日期:2025-09-11
  • 通讯作者: 童刚生 E-mail:tgs@sjtu.edu.cn
  • 基金资助:
    上海市学术/技术研究带头人计划(批准号:23XD1431800)和上海高校青年教师资助培养计划项目(批准号:0234-A1-0100-25-QP034)资助

Fabrication of High-Reflectance and Low-Thermal-Conductivity HGM@TiO2@ZnO Core-Shell-Shell Material via Rotational Coating

QI Wenjia1,ZHAO Kaiqing2,WU Gang2,WUMAIER·Yasen1,TONG Gangsheng2,3   

  1. 1. School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science

    2. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 3. Shanghai Aerospace Equipments Manufacturer Co. Ltd.,100 Huaning Road

  • Received:2025-07-04 Revised:2025-08-20 Online First:2025-09-11 Published:2025-09-11
  • Contact: TONG Gangsheng E-mail:tgs@sjtu.edu.cn
  • Supported by:
    Supported by Program of Shanghai Academic/Technology Research Leader (No. 23XD1431800) and the Shanghai Young College Teachers Training Funding Program (No.0234-A1-0100-25-QP034)

摘要: 本文以空心玻璃微球(HGM)为基体,通过旋转包覆工艺和两步非均相沉淀法在其表面依次均匀包覆鸡蛋壳状TiO2与纳米针状ZnO,构建了一种高反射低导热型核-壳-壳材料(HGM@TiO2@ZnO)。研究表明,获得的HGM@TiO2@ZnO具有空心核结构减少了热量传递效率,高、低折射率双壳层结构对光产生了多级反射和散射以及纳米针状ZnO之间形成了空腔结构,进一步降低了HGM@TiO2@ZnO的导热系数,实现“反射-隔热”双重协同作用。结果表明,HGM@TiO2@ZnO材料在可见-近红外(380-2500 nm)波段的太阳光平均反射率高达88.64%,较HGM、HGM@TiO2及物理共混材料(HGM&TiO2&ZnO)分别提升了25.6%、6.2%和10.0%。当HGM@TiO2@ZnO以40 vol%添加至丙烯酸树脂基体时,所获得涂层的可见-近红外太阳光平均反射率高达72.86%,导热系数低至0.08 W·m-1·K-1;较同体积分数HGM添加到丙烯酸树脂基涂层,反射率提升5.4%,导热系数降低34%。因此,本文揭示了核-壳-壳层级结构对光热性能的协同调控机制,为开发高效热反射隔热功能涂料提供了理论支撑与材料基础。

关键词: 空心玻璃微球, 核壳材料, 太阳光反射率, 导热系数, 涂料

Abstract: This study utilized hollow glass microspheres (HGM) as the substrate and sequentially coated them with eggshell-like TiO2 and needle-like nano-ZnO through a rotational coating process and a two-step heterogeneous precipitation method, constructing a high-reflectance, low-thermal-conductivity core-shell-shell material (HGM@TiO2@ZnO). Research demonstrates that the obtained HGM@TiO2@ZnO exhibits a hollow core structure that reduces heat transfer efficiency. The dual-shell structure, comprising high and low refractive index layers, induces multi-level reflection and scattering of light, while the cavity structures formed between the needle-like nano-ZnO further decrease the thermal conductivity of HGM@TiO2@ZnO, achieving a dual synergistic effect of "reflection-thermal insulation." Results indicate that the HGM@TiO2@ZnO material achieves an average solar reflectance of up to 88.64% in the visible-near-infrared (380–2500 nm) range, representing improvements of 25.6%, 6.2%, and 10.0% compared to HGM, HGM@TiO2, and physically blended materials (HGM&TiO2&ZnO), respectively. When HGM@TiO2@ZnO was added to an acrylic resin matrix at 40 vol%, the resulting coating exhibited an average solar reflectance of 72.86% and a thermal conductivity as low as 0.08 W·m-1·K-1. Compared to coatings with the same volume fraction of HGM added to the acrylic resin, the reflectance increased by 5.4%, while the thermal conductivity decreased by 34%. Thus, this study elucidates the synergistic regulation mechanism of the core-shell-shell hierarchical structure on photothermal performance, providing theoretical support and material foundations for the development of high-efficiency thermal-reflective and insulating functional coatings.

中图分类号: 

TrendMD: