高等学校化学学报

• 研究论文 • 上一篇    下一篇

发展可极化键偶极模型快速预测环肽分子构象稳定性

郑笑函,祝佳怡,李晓蕾,郝强,王长生   

  1. 辽宁师范大学化学化工学院
  • 收稿日期:2025-06-23 修回日期:2025-07-31 网络首发:2025-08-18 发布日期:2025-08-18
  • 通讯作者: 郝强 E-mail:qh@luun.edu.cn
  • 基金资助:
    国家自然科学基金(批准号: 21773102)和辽宁省教育厅科学研究面上一般项目(批准号: LJKMZ20221411)资助

Extending the polarizable bond-dipole model to enable the rapid prediction of the conformational stability of cyclic peptides

ZHENG Xiaohan, ZHU Jiayi, LI Xiaolei, HAO Qiang, WANG Changsheng   

  1. School of Chemistry and Chemical Engineering, Liaoning Normal University
  • Received:2025-06-23 Revised:2025-07-31 Online First:2025-08-18 Published:2025-08-18
  • Contact: Qiang HAO E-mail:qh@luun.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(No. 21773102) and the Project of the Department of Education of Liaoning Province, China(No. LJKMZ20221411)

摘要: 环肽分子具有独特的结构稳定性、多样的生物活性和良好的靶向性,是药物研发的重要先导化合物. 快速准确预测环肽构象稳定性,不仅有助于揭示蛋白质错误折叠的分子机制,还可为靶点识别与干预提供理论依据,对理性设计结构稳定、活性优良的环肽类药物具有重要意义. 本文将环肽分子中主链上C=O、N-H、Cα-H化学键和侧链上C-O、O-H化学键视为键偶极,使用固有偶极-固有偶极作用描述体系中的静电作用,使用固有偶极-诱导偶极作用以及诱导偶极-诱导偶极作用描述极化作用,并引入键长、键角、二面角作用项描述成键作用,从而将可极化偶极-偶极作用模型发展为可预测环肽分子不同构象相对稳定性的分子力场势函数. 将本文势函数应用于数据库中9个环肽分子共计33个不同构象,快速计算这些构象的构象能,并与高精度DLPNO-MP2/aug-cc-pVTZ方法和可极化分子力场AMOEBA方法的构象能进行比较. 比较结果表明,相对于DLPNO-MP2/aug-cc-pVTZ方法的环肽分子构象能,本文方法的线性相关系数R2=0.9784,均方根偏差RMSE=13.43 kJ·mol-1,略优于AMOEBA方法的线性相关系数R2=0.9682和均方根偏差RMSE=16.28 kJ·mol-1. 对环肽分子的结构优化和频率计算的结果进一步表明了本文方法的合理性. 相较于著名的AMOEBA可极化分子力场方法,本文方法显著降低了静电作用项数. 本文方法可望极大提高可极化力场方法的计算效率,为药物筛选和生物分子模拟提供新工具.

关键词: 环肽, 构象能, 化学键偶极, 诱导键偶极, 可极化势函数

Abstract: Cyclic peptides possess unique conformational stability, diverse biological activities, and favorable target specificity, making them important lead compounds in drug development. Rapid and accurate prediction of their conformational stability not only aids in uncovering the molecular mechanisms of protein misfolding but also provides a theoretical basis for target identification and intervention. This is of great significance for the rational design of structurally stable and highly active cyclic peptide-based drugs. In this paper, the polar chemical bonds C=O, N-H, Cα-H, and C-O, O-H in cyclic peptides are regarded as bond dipoles. The permanent dipole-permanent dipole interaction is used to describe the electrostatic interaction in the system, the permanent dipole-induce dipole interaction and induce dipole-induced dipole interaction are used to describe the polarization. The bonded terms, including the bond-stretching, angle-bending, and dihedral torsion, are also introduced. The polarizable dipole-dipole interaction model is thus developed into a potential function that can be used to rapidly calculate the relative energies of different conformations of cyclic peptides. The potential function is applied to 9 cyclic peptides, total 33 different conformations to rapidly predict the conformational energies of these conformations. The conformational energies of these conformations is also calculated using the AMOEBA and DLPNO-MP2/aug-cc-pVTZ methods. The calculation results show that, compared with the DLPNO-MP2/aug-cc-pVTZ conformational energies, the linear correlation coefficient R2 of our model is 0.9784, and the root mean square deviation is 13.43 kJ·mol-1, slightly better than the linear correlation coefficient 0.9682 and root mean square deviation 16.28 kJ·mol-1 of the AMOEBA method. The results of structural optimization and frequency calculation further suggest the rationality of our model. Furthermore, compared with the AMOEBA polarizable force field, our polarizable model significantly reduces the number of electrostatic terms. The model proposed in this paper may provide a new tool for the research and development of novel cyclic peptides as drug candidate molecules.

Key words: Cyclic peptide, Conformational energy, Bond dipole, Induced dipole, Polarizable potential energy function

中图分类号: 

TrendMD: