高等学校化学学报

• 研究论文 • 上一篇    下一篇

基于螺芴基团的红光热激活延迟荧光材料

 珊,巩世烜,靳雨鑫,陈子奇 ,马金珠,冯敏强,樊    

  1. 苏州大学功能纳米与软物质研究院,江苏省碳基功能材料与器件重点实验室,
  • 收稿日期:2024-11-06 修回日期:2025-01-10 网络首发:2025-01-16 发布日期:2025-01-16
  • 通讯作者: 樊健 E-mail:jianfan@suda.edu.cn
  • 基金资助:
    国家重点研发计划(批准号:2020YFA0714604)、国家自然科学基金(批准号:22005184)和江苏省国际科技合作/港澳台科技合作项目(批准号:BZ2023053)资助

Red Thermally Activated Delayed Fluorescence Materials Based on Spirofluorene Units

GAO Shan, GONG Shixuan, JIN Yuxin, CHEN Ziqi, MA Jinzhu, FUNG Man-Keung, FAN Jian   

  1. Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University

  • Received:2024-11-06 Revised:2025-01-10 Online First:2025-01-16 Published:2025-01-16
  • Supported by:
    Supported by the National Key R&D Program of China (No. 2020YFA0714604), the National Natural Science Foundation of China (No. 22005184) and  the International Science and Technology Innovation Cooperation/Hong Kong, Macao and Taiwan Science and Technology Innovation Cooperation Project of Jiangsu Province (No. BZ2023053)

摘要: 本工作在常用的三苯胺给体单元和二苯并[a,c]吩嗪受体单元的基础上,利用螺芴基团的空间位阻效应,设计并合成了TPA-DSP和SPTPA-DSP两种红光热激活延迟荧光(TADF)材料。螺芴基团凭借自身较大的空间位阻,增加了分子的刚性,避免了分子间的紧密堆积,减少了非辐射跃迁能量损失,有利于提升器件性能。在与4,4'-二(9-咔唑)联苯(CBP)共掺杂作有机发光层后,TPA-DSP和SPTPA-DSP在有机电致发光器件(OLED)中表现出优异的性能。TPA-DSP和SPTPA-DSP均发射红光,TPA-DSP在7 wt%掺杂浓度下在580 nm处实现了17.8%的最大外量子效率(EQE),SPTPA-DSP在7 wt%掺杂浓度下在580 nm处实现了19.3%的最大EQE。TPA-DSP和SPTPA-DSP最大亮度分别达到了11800和12650 cd/m2,最大电流效率(CE)均达到了40.0 cd/A,最大功率效率(PE)分别达到了44.3和47.2 lm/W。由于具有更大的空间位阻,多螺芴基团的SPTPA-DSP展现出更加优异的器件性能。该研究表明,螺芴基团通过空间位阻的多重作用,能够有效提高热激活延迟荧光材料的性能,可进一步利用与开发。

关键词: 热激活延迟荧光, 红光, 空间位阻, 螺芴

Abstract: On the basis of commonly used triphenylamine donor units and dibenzo [a, c] phenazine acceptor units, two red thermally activated delayed fluorescence(TADF) materials TPA-DSP and SPTPA-DSP were designed and synthesized by the steric hindrance effect of spirofluorene group. The spirofluorene group, known for its large steric hindrance, increases the rigidity of the molecule, avoids tight packing between molecules, and effectively reduces non-radiative transition energy loss, which is crucial for improving device performance. By co-doping with 4,4'-Bis(N-carbazolyl)-1,1'-biphenyl(CBP) as organic light emitting layer, TPA-DSP and SPTPA-DSP exhibited excellent performance in organic light-emitting diodes(OLEDs). Both materials emitted red light, with TPA-DSP achieving a maximum external quantum efficiency(EQE) of 17.8% at 580 nm with a 7 wt% doping concentration. SPTPA-DSP, featuring multiple spirofluorene groups, demonstrated superior device performance, achieving a maximum EQE of 19.3% at 580 nm with a 7 wt% doping concentration. The maximum luminance of TPA-DSP and SPTPA-DSP reached 11800 and 12650 cd/m2, the maximum current efficiency(CE) both reached 40.0 cd/A, and the maximum power efficiency(PE) reached 44.3 and 47.2 lm/W, respectively. Notably, SPTPA-DSP, featuring multiple spirofluorene groups, demonstrated superior device performance due to its greater steric hindrance. Our findings underscore the potential of the spirofluorene group to enhance the performance of TADF materials through steric hindrance effects, which not only contributes to the understanding the effect of steric hindrance in TADF but also paves the way for further advancements and applications.

Key words: Thermally activated delayed fluorescence, Red luminescence, Steric hindrance, Spirofluorene

中图分类号: 

TrendMD: