高等学校化学学报

• 综合评述 •    

导电高分子在神经界面电极中的应用

樊文倩1, 钟正祥2, 田宫伟2, 王宇3, 巩桂芬1, 齐殿鹏2   

  1. 1.哈尔滨理工大学材料科学与工程学院, 哈尔滨 150080
    2.哈尔滨工业大学化工与化学学院, 哈尔滨 150001
    3.郑州大学材料科学与工程学院, 郑州 450001
  • 收稿日期:2020-08-21 出版日期:2020-12-21 发布日期:2020-12-21
  • 基金资助:
    国家自然科学基金(批准号(51903068);51903065)资助

Application of Conductive Polymer in Nerve Interface Electrode

FAN Wenqian1, ZHONG Zhengxiang2, TIAN Gongwei2, WANG Yu3, GONG Guifen1, QI Dianpeng2   

  1. 1.School of Materials Science and Engineering,Harbin University of Science and Technology,Harbin 150080,China
    2.School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,China
    3.School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China
  • Received:2020-08-21 Online:2020-12-21 Published:2020-12-21
  • Supported by:
    ? Supported by the National Natural Science Foundation, China(51903068)

摘要:

神经界面电极作为人体和外部器件间信息融合的媒介, 为人们进一步探究神经系统高级功能的机制提供了有效工具. 传统的神经电极多以金属和半导体材料为主, 这两类材料因具有惰性材料的特性及优越的 导电性能而成为早期神经电极的主要制备材料, 但由于其刚性过大和光滑表面导致的机械失配及与生物组织间过高的电化学阻抗限制了神经电极的进一步发展. 导电高分子作为一种有机导电材料, 同时具备柔软性 (杨氏模量约在0.01~10 GPa)和导电性(高掺杂度的导电高分子的电导率在金属范围, 100~105 S/cm)的特征, 是制备神经电极的有效材料. 近年来, 人们利用导电高分子材料对传统电极材料进行改性甚至替代, 以提高电极比表面积、 减小界面阻抗, 并提高电极检测的灵敏性; 同时减小电极与组织间的应变失配, 减少炎症反应, 并进一步在导电高分子中引入功能性生物大分子, 减少生物组织对电极的排异反应, 增加电极在体内长期植入的稳定性. 本文讨论和总结了导电高分子材料在神经电极中的应用, 分别对导电高分子作为涂层修饰神经电极、 全导电高分子材料神经电极及导电高分子复合材料神经电极等展开讨论, 分析了导电高分子在神经界面电极中的应用前景及存在的问题, 以期对神经界面电极在脑科学和生物电子医疗等前沿领域的进一步发展提供参考.

关键词: 导电高分子, 神经界面电极, 生物兼容性, 应变失配, 组织整合

Abstract:

As a medium of information communication between human body and external devices, neural interface electrode provides an effective tool for people to further explore the working mechanism of nervous system. Most of the traditional nerve electrodes are made from metal or semiconductor materials. These materials have become the main preparation materials of early nerve electrode because of their inert material characteristics and excellent electrical conductivity. However, due to the mechanical mismatch caused by excessive rigidity and smooth surface, and the high electrochemical impedance with biological tissues, these materials limit the further development of nerve electrode. As an organic conductive material, conductive polymer has the characteristics of softness(Young’s modulus is about 0.01—10 GPa) and conductivity(the conductivity of highly doped conductive polymer is in the metal range of 100—105 S/cm), which is an effective material for nerve electrode preparation. In recent years, conductive polymers have been used to modify or even replace the traditional electrode materials to reduce the interface impedance and improve the sensitivity of electrode detection; At the same time, it can increase the stability of electrode implanted in vivo for a long time by reducing the strain mismatch between the electrode and tissue, the inflammatory reaction, and further introducing functional biomacromolecules into the conductive polymer to reduce the rejection of biological tissue to the electrode. In this paper, we will discuss and summarize the application of conductive polymer materials in neural electrode. Herein, three aspects of conducting polymer, including polymer coating nerve electrode, all polymer neural electrode and conductive polymer composite material neural electrode, are discussed respectively. The application prospect and existing problems of conductive polymer in neural interface electrode are analyzed, which can provide reference for the further development of neural interface electrode in brain science, bioelectronic medicine and other frontier fields.

Key words: Conductive polymer, Neural interface electrode, Biocompatibility, Strain mismatch, Tissue integration

中图分类号: