高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (6): 1151.doi: 10.7503/cjcu20200067
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
张露灏1,2,曹书婷1,2,刘江波3,左小磊3,王丽华1,4,樊春海1,3,*(),李江1,4,*(
)
收稿日期:
2020-02-10
出版日期:
2020-06-10
发布日期:
2020-03-23
通讯作者:
樊春海,李江
E-mail:fanchunhai@sjtu.edu.cn;lijiang@zjlab.org.cn
基金资助:
ZHANG Luhao1,2,CAO Shuting1,2,LIU Jiangbo3,ZUO Xiaolei3,WANG Lihua1,4,FAN Chunhai1,3,*(),LI Jiang1,4,*(
)
Received:
2020-02-10
Online:
2020-06-10
Published:
2020-03-23
Contact:
Chunhai FAN,Jiang LI
E-mail:fanchunhai@sjtu.edu.cn;lijiang@zjlab.org.cn
Supported by:
摘要:
综述了脂质-DNA复合结构的设计、 可控制备和结构特性; 并重点讨论其在膜生物学中的应用, 包括对活细胞膜的动态分析、 膜上纳米孔道的构建、 对活细胞的空间排布与相互作用调控以及活体药物递送等; 总结了该领域存在的一些挑战, 并对未来发展进行了展望. 利用这些精确可控的脂质-DNA复合结构, 研究者可以更深入地理解细胞膜在分子尺度上的工作原理, 实现对细胞膜功能的精确调控, 为细胞成像诊断、 纳米机器与人工细胞构建等应用提供有力的工具.
中图分类号:
TrendMD:
张露灏, 曹书婷, 刘江波, 左小磊, 王丽华, 樊春海, 李江. 脂质修饰DNA复合结构的可控制备及膜生物学研究. 高等学校化学学报, 2020, 41(6): 1151.
ZHANG Luhao, CAO Shuting, LIU Jiangbo, ZUO Xiaolei, WANG Lihua, FAN Chunhai, LI Jiang. Construction of Controllable Lipid-DNA Complex for Study in Membrane Biology . Chem. J. Chinese Universities, 2020, 41(6): 1151.
Fig.1 Nanopores constructed by lipid-DNA conjugates (A) Self-assembled cholesterol-modified DNA nanopores[37], copyright 2019, American Chemical Society; (B) hydrophobic belts used to construct nanopores[26], copyright 2013, American Chemical Society; (C) porphyrin-modified DNA nanopores[40], copyright 2013, Wiley-VCH; (D) three-cholesterol-modified DNA nanopores[41], copyright 2018, Springer Nature; (E) DNA nanopores constructed from DNA tile structures[42], copyright 2015, American Chemical Society.
Fig.2 Lipid-DNA conjugates regulate cell aggregation (A) Control of cell attachment through lipid-DNA conjugates[60], copyright 2010, Elsevier; (B) lipid modified DNA aptamer mediated cell targeting[63], copyright 2013, Wiley-VCH; (C) programming cellular Interactions by three cholesterol modified DNA nanoplatform[64], copyright 2019, American Chemical Society.
Fig.3 Lipid-DNA conjugates for cell membrane analysis (A) Probing signaling molecules in the cellular membrane microenvironment[66], copyright 2019, Wiley-VCH; (B) phosphorylated lipid-DNA selectively anchors on cell membranes with high alkaline phosphatase expression[67], copyright 2019, Springer Nature.
Fig.4 Lipid-DNA conjugates for studying mechanobiology (A) Lipid modified DNA origami nanoparticles to scaffold and deform lipid membrane [76], copyright 2015, Wiley-VCH; (B) lipid modified DNA-based membrane molecular probes for intercellular tensile forces visualization[95], copyright 2017, American Chemical Society.
Fig.5 Lipid-DNA conjugates for cargo deliveries (A) Lipid modified DNA for in vivo cell modification and localized immunotherapy[103], copyright 2011, Wiley-VCH; (B) membrane encapsulation of DNA nanostructures to achieve in vivo stability[37], copyright 2019, American Chemical Society.
[1] | Jiang Y., Lee A., Chen J., Ruta V., Cadene M., Chait B. T., MacKinnon R., Nature, 2003, 423(6935), 33—41 |
[2] | Simon M. I., Strathmann M. P., Gautam N., Science, 1991, 252(5007), 802—808 |
[3] | Schlessinger J., Cell, 2000, 103(2), 211—225 |
[4] | Eggeling C., Ringemann C., Medda R., Schwarzmann G., Sandhoff K., Polyakova S., Belov V. N., Hein B., von Middendorff C., Schonle A., Hell S. W., Nature, 2009, 457(7233), 1159—1162 |
[5] | Van Meer G., Voelker D. R., Feigenson G. W., Nat. Rev. Mol. Cell Biol., 2008, 9(2), 112—124 |
[6] | Sezgin E., Levental I., Mayor S., Eggeling C., Nat. Rev. Mol. Cell Biol., 2017, 18(6), 361—374 |
[7] | Ishitani R., Nureki O., Nameki N., Okada N., Nishimura S., Yokoyama S., Cell, 2003, 113(3), 383—394 |
[8] | Dai J. B., Gu P. L., Feng L. Y., Li Y., Peng H. Z., Li Q. N., Wang L. H., Fan C. H. , Sci. Sin. Chim. 2019, 49(9), 1137—1148 |
( 代江兵, 谷佩霖, 冯灵玉, 李宇, 彭红珍, 李晴暖, 王丽华, 樊春海 . 中国科学: 化学, 2019, 49(9) 1137—1148) | |
[9] | Zhang Z. Q., Wang S. S., Zhang Z. C., Ma J., Wang X. F., Zhou T., Wang F., Zhang G. D. , Chem. J. Chinese Universities 2019, 40(12), 2465—2470 |
( 张志庆, 汪珊珊, 张子辰, 马杰, 王秀凤, 周亭, 王芳, 张国栋 . 高等学校化学学报, 2019, 40(12) 2465—2470) | |
[10] | Samanta A., Medintz I. L., Nanoscale, 2016, 8(17), 9037—9095 |
[11] | Zhao Y., Guo L. J., Dai J. B., Li Q., Li D., Wang L. H., Chin. J. Anal. Chem., 2017, (7), 1078—1087 |
( 赵彦, 郭琳洁, 代江兵, 李茜, 李迪, 王丽华 . 分析化学, 2017, (7), 1078—1087) | |
[12] | Edwards G., Davis P., Savva S., Addiction, 2003, 98(11), 1471—1481 |
[13] | Rietveld A., Simons K., Biochim. Biophys. Acta, 1998, 1376(3), 467—479 |
[14] | Taylor M. J., Husain K., Gartner Z. J., Mayor S., Vale R. D., Cell, 2017, 169(1), 108—119 |
[15] | Zhao W., Schafer S., Choi J., Yamanaka Y. J., Lombardi M. L., Bose S., Carlson A. L., Phillips J. A., Teo W., Droujinine I. A., Cui C. H., Jain R. K., Lammerding J., Love J. C., Lin C. P., Sarkar D., Karnik R., Karp J. M., Nat. Nanotechnol., 2011, 6(8), 524—531 |
[16] | Tokunaga T., Namiki S., Yamada K., Imaishi T., Nonaka H., Hirose K., Sando S., J. Am. Chem. Soc., 2012, 134(23), 9561—9564 |
[17] | Seifert A., Gopfrich K., Burns J. R., Fertig N., Keyser U. F., Howorka S., ACS Nano, 2015, 9(2), 1117—1126 |
[18] | Ohvo-Rekila H., Ramstedt B., Leppimaki P., Slotte J. P., Prog. Lipid Res., 2002, 41(1), 66—97 |
[19] | Sun L., Gao Y., Xu Y., Chao J., Liu H., Wang L., Li D., Fan C., J. Am. Chem. Soc., 2017, 139(48), 17525—17532 |
[20] | Cockroft S. L., Chu J., Amorin M., Ghadiri M. R., J. Am. Chem. Soc., 2008, 130(3), 818—820 |
[21] | Hosse R. J., Rothe A., Power B. E., Protein Sci., 2006, 15(1), 14—27 |
[22] | Dietz H., Douglas S. M., Shih W. M., Science, 2009, 325(5941), 725—730 |
[23] | Douglas S. M., Dietz H., Liedl T., Hogberg B., Graf F., Shih W. M., Nature, 2009, 459(7245), 414—418 |
[24] | Douglas S. M., Marblestone A. H., Teerapittayanon S., Vazquez A., Church G. M., Shih W. M., Nucleic Acids Res., 2009, 37(15), 5001—5006 |
[25] | Burns J. R., Al-Juffali N., Janes S. M., Howorka S., Angew. Chem. Int. Ed., 2014, 53(46), 12466—12470 |
[26] | Burns J. R., Stulz E., Howorka S., Nano Lett., 2013, 13(6), 2351—2356 |
[27] | Liu H., Zhu Z., Kang H., Wu Y., Sefan K., Tan W., Chemistry, 2010, 16(12), 3791—3797 |
[28] | Raouane M., Desmaele D., Urbinati G., Massaad-Massade L., Couvreur P., Bioconjugate Chem., 2012, 23(6), 1091—1104 |
[29] | Patwa A., Gissot A., Bestel I., Barthelemy P., Chem. Soc. Rev., 2011, 40(12), 5844—5854 |
[30] | Howorka S., Science, 2016, 352(6288), 890—891 |
[31] | Pages J. M., James C. E., Winterhalter M., Nat. Rev. Microbiol., 2008, 6(12), 893—903 |
[32] | Majd S., Yusko E. C., Billeh Y. N., Macrae M. X., Yang J., Mayer M., Curr. Opin. Biotechnol., 2010, 21(4), 439—476 |
[33] | Movileanu L., Trends Biotechnol., 2009, 27(6), 333—341 |
[34] | Bayley H., Cremer P. S., Nature, 2001, 413(6852), 226—230 |
[35] | Clarke J., Wu H. C., Jayasinghe L., Patel A., Reid S., Bayley H., Nat. Nanotechnol., 2009, 4(4), 265—270 |
[36] | Langecker M., Arnaut V., Martin T. G., List J., Renner S., Mayer M., Dietz H., Simmel F. C., Science, 2012, 338(6109), 932—936 |
[37] | Madsen M., Gothelf K. V., Chem. Rev., 2019, 119(10), 6384—6458 |
[38] | Song L., Hobaugh M. R., Shustak C., Cheley S., Bayley H., Gouaux J. E., Science, 1996, 274(5294), 1859—1866 |
[39] | Burns J. R., Seifert A., Fertig N., Howorka S., Nat. Nanotechnol., 2016, 11(2), 152—156 |
[40] | Burns J. R., Gopfrich K., Wood J. W., Thacker V. V., Stulz E., Keyser U. F., Howorka S., Angew. Chem. Int. Ed., 2013, 52(46), 12069—12072 |
[41] |
Birkholz O., Burns J. R., Richter C. P., Psathaki O. E., Howorka S., Piehler J., Nat. Commun., 2018, 9(1), 1521—1528
doi: 10.1038/s41467-018-02905-w URL |
[42] | Gopfrich K., Zettl T., Meijering A. E., Hernandez-Ainsa S., Kocabey S., Liedl T., Keyser U. F., Nano Lett., 2015, 15(5), 3134—3138 |
[43] | Gopfrich K., Li C. Y., Mames I., Bhamidimarri S. P., Ricci M., Yoo J., Mames A., Ohmann A., Winterhalter M., Stulz E., Aksimentiev A., Keyser U. F., Nano Lett., 2016, 16(7), 4665—4669 |
[44] | Howorka S., Nat. Nanotechnol., 2017, 12(7), 619—630 |
[45] | Stoddart D., Ayub M., Hoefler L., Raychaudhuri P., Klingelhoefer J. W., Maglia G., Heron A., Bayley H., Proc. Natl. Acad. Sci. USA, 2014, 111(7), 2425—2430 |
[46] | Rothemund P. W. K., Nature, 2006, 440(7082), 297—302 |
[47] | Chen Y. J., Groves B., Muscat R. A., Seelig G., Nat. Nanotechnol., 2015, 10(9), 748—760 |
[48] | Han D., Pal S., Nangreave J., Deng Z., Liu Y., Yan H., Science, 2011, 332(6027), 342—346 |
[49] | Zhang F., Jiang S., Wu S., Li Y., Mao C., Liu Y., Yan H., Nat. Nanotechnol., 2015, 10(9), 779—780 |
[50] |
Benson E., Mohammed A., Gardell J., Masich S., Czeizler E., Orponen P., Hogberg B., Nature, 2015, 523(7561), 441—442
doi: 10.1038/nature14586 URL |
[51] | Maingi V., Lelimousin M., Howorka S., Sansom M. S. P., ACS Nano, 2015, 9(11), 11209—11217 |
[52] | Yoo J., Aksimentiev A., J. Phys. Chem. Lett., 2015, 6(23), 4680—4687 |
[53] | Ackermann D., Famulok M., Nucleic Acids Res., 2013, 41(8), 4729—4739 |
[54] | Edwardson T. G. W., Carneiro K. M. M., McLaughlin C. K., Serpell C. J., Sleiman H. F., Nat. Chem., 2013, 5(10), 868—875 |
[55] | Todhunter M. E., Jee N. Y., Hughes A. J., Coyle M. C., Cerchiari A., Farlow J., Garbe J. C., LaBarge M. A., Desai T. A., Gartner Z. J., Nat. Methods, 2015, 12(10), 975—981 |
[56] | Huh D., Hamilton G. A., Ingber D. E., Trends Cell Biol., 2011, 21(12), 745—754 |
[57] | Kachouie N. N., Du Y., Bae H., Khabiry M., Ahari A. F., Zamanian B., Fukuda J., Khademhosseini A., Organogenesis, 2010, 6(4), 234—244 |
[58] | Gartner Z. J., Bertozzi C. R., Proc. Natl. Acad. Sci. USA, 2009, 106(12), 4606—4610 |
[59] | Selden N. S., Todhunter M. E., Jee N. Y., Liu J. S., Broaders K. E., Gartner Z. J., J. Am. Chem. Soc., 2012, 134(2), 765—768 |
[60] |
Teramura Y., Chen H., Kawamoto T., Iwata H., Biomaterials, 2010, 31(8), 2229—2235
doi: 10.1016/j.biomaterials.2009.11.098 URL |
[61] | Teramura Y., Biomaterials, 2015, 48, 119—128 |
[62] |
Todhunter M. E., Weber R. J., Farlow J., Jee N. Y., Cerchiari A. E., Gartner Z. J., Curr. Protoc. Chem. Biol., 2016, 8(3), 147—178
doi: 10.1002/9780470559277.2016.8.issue-3 URL |
[63] | Xiong X., Liu H., Zhao Z., Altman M. B., Lopez-Colon D., Yang C. J., Chang L. J., Liu C., Tan W., Angew. Chem. Int. Ed., 2013, 52(5), 1472—1476 |
[64] |
Li J., Xun K., Pei K., Liu X., Peng X., Du Y., Qiu L., Tan W., J. Am. Chem. Soc., 2019, 141(45), 18013—18020
doi: 10.1021/jacs.9b04725 URL |
[65] |
Qiu L., Zhang T., Jiang J., Wu C., Zhu G., You M., Chen X., Zhang L., Cui C., Yu R., Tan W., J. Am. Chem. Soc., 2014, 136(38), 13090—13093
doi: 10.1021/ja5047389 URL |
[66] | Feng G., Luo X., Lu X., Xie S., Deng L., Kang W., He F., Zhang J., Lei C., Lin B., Huang Y., Nie Z., Yao S., Angew. Chem. Int. Ed., 2019, 58(20), 6590—6594 |
[67] |
Jin C., He J., Zou J., Xuan W., Fu T., Wang R., Tan W., Nat. Commun., 2019, 10, 2704—2713
doi: 10.1038/s41467-019-10639-6 URL |
[68] | Simons K., Toomre D., Nat. Rev. Mol. Cell Biol., 2000, 1(1), 31—39 |
[69] | Ohmann A., Li C. Y., Maffeo C., Al Nahas K., Baumann K. N., Gopfrich K., Yoo J., Keyser U. F., Aksimentiev A., Nat. Commun., 2018, 9, 2425—2434 |
[70] | Chung I., Akita R., Vandlen R., Toomre D., Schlessinger J., Mellman I., Nature, 2010, 464(7289), 783—787 |
[71] | Groves J. T., Parthasarathy R., Forstner M. B., Annu. Rev. Biomed. Eng., 2008, 10, 311—338 |
[72] | Bian X., Zhang Z., Xiong Q., De Camilli P., Lin C., Nat. Chem. Biol., 2019, 15(8), 830—837 |
[73] | You M., Lyu Y., Han D., Qiu L., Liu Q., Chen T., Sam Wu C., Peng L., Zhang L., Bao G., Tan W., Nat. Nanotechnol., 2017, 12(5), 453—459 |
[74] | Kabouridis P. S., Mol. Membr. Biol., 2006, 23(1), 49—57 |
[75] | Lin C. L., Li J., Zhou Y., Sun Y. H., Wang L. H., Hu J., Fan C. H. , Nucl. Tech. 2016, 40(2), 21—27 |
( 林承列, 李江, 周宜, 孙艳红, 王丽华, 胡钧, 樊春海 . 核技术, 2016, 40(2) 21—27) | |
[76] | Czogalla A., Kauert D. J., Franquelim H. G., Uzunova V., Zhang Y., Seidel R., Schwille P., Angew. Chem. Int. Ed., 2015, 54(22), 6501—6505 |
[77] | Zhang Z., Yang Y., Pincet F., Llaguno M. C., Lin C., Nat. Chem., 2017, 9(7), 653—659 |
[78] | Wu N., Chen F., Zhao Y., Yu X., Wei J., Zhao Y., Langmuir, 2018, 34(49), 14721—14730 |
[79] | Sun Z., Costell M., Fassler R., Nat. Cell Biol., 2019, 21(1), 25—31 |
[80] | Polacheck W. J., Chen C. S., Nat. Methods, 2016, 13(5), 415—423 |
[81] | Pirone D. M., Liu W. F., Ruiz S. A., Gao L., Raghavan S., Lemmon C. A., Romer L. H., Chen C. S., J. Cell Biol., 2006, 174(2), 277—288 |
[82] | Zhou J., Kim H. Y., Wang J. H., Davidson L. A., Development, 2010, 137(16), 2785—2794 |
[83] | Beningo K. A., Wang Y. L., Trends Cell Biol., 2002, 12(2), 79—84 |
[84] | Delvoye P., Wiliquet P., Leveque J. L., Nusgens B. V., Lapiere C. M., J. Invest. Dermatol., 1991, 97(5), 898—902 |
[85] | Zimmermann W. H., Fink C., Kralisch D., Remmers U., Weil J., Eschenhagen T., Biotechnol. Bioeng., 2000, 68(1), 106—114 |
[86] |
Tan J. L., Tien J., Pirone D. M., Gray D. S., Bhadriraju K., Chen C. S., Proc. Natl. Acad. Sci. USA, 2003, 100(4), 1484—1489
doi: 10.1073/pnas.0235407100 URL |
[87] |
Legant W. R., Choi C. K., Miller J. S., Shao L., Gao L., Betzig E., Chen C. S., Proc. Natl. Acad. Sci. USA, 2013, 110(3), 881—886
doi: 10.1073/pnas.1207997110 URL |
[88] | Chowdhury F., Li I. T., Ngo T. T., Leslie B. J., Kim B. C., Sokoloski J. E., Weiland E., Wang X., Chemla Y. R., Lohman T. M., Ha T., Nano Lett., 2016, 16(6), 3892—3897 |
[89] |
Zhang Y., Ge C., Zhu C., Salaita K., Nat. Commun., 2014, 5, 5167—5173
doi: 10.1038/ncomms6167 URL |
[90] |
Blakely B. L., Dumelin C. E., Trappmann B., McGregor L. M., Choi C. K., Anthony P. C., Duesterberg V. K., Baker B. M., Block S. M., Liu D. R., Chen C. S., Nat. Methods, 2014, 11(12), 1229—1232
doi: 10.1038/NMETH.3145 URL |
[91] | Tambe D. T., Hardin C. C., Angelini T. E., Rajendran K., Park C. Y., Serra-Picamal X., Zhou E. H., Zaman M. H., Butler J. P., Weitz D. A., Fredberg J. J., Trepat X., Nat. Mater., 2011, 10(6), 469—475 |
[92] | Tambe D. T., Croutelle U., Trepat X., Park C. Y., Kim J. H., Millet E., Butler J. P., Fredberg J. J., PLoS One, 2013, 8(2), e55172 |
[93] | Conway D. E., Breckenridge M. T., Hinde E., Gratton E., Chen C. S., Schwartz M. A., Curr. Biol., 2013, 23(11), 1024—1030 |
[94] | Borghi N., Sorokina M., Shcherbakova O. G., Weis W. I., Pruitt B. L., Nelson W. J., Dunn A. R., Proc. Natl. Acad. Sci. USA, 2012, 109(31), 12568—12573 |
[95] | Zhao B., O'Brien C., Mudiyanselage A., Li N., Bagheri Y., Wu R., Sun Y., You M., J. Am. Chem. Soc., 2017, 139(50), 18182—18185 |
[96] | Chang Y., Liu Z., Zhang Y., Galior K., Yang J., Salaita K., J. Am. Chem. Soc., 2016, 138(9), 2901—2904 |
[97] | Salaita K., Nair P. M., Petit R. S., Neve R. M., Das D., Gray J. W., Groves J. T., Science, 2010, 327(5971), 1380—1385 |
[98] | Zhao J. Q., Yan C. X., Chen Z., Yang N., Feng X., Zhao Y. P., Chen L. , Chem. J. Chinese Universities 2018, 39(7), 1592—1601 |
( 赵军强, 闫彩霞, 陈泽, 杨宁, 冯霞, 赵义平, 陈莉 . 高等学校化学学报, 2018, 39(7) 1592—1601) | |
[99] | Liu D., Yang F., Xiong F., Gu N., Theranostics, 2016, 6(9), 1306—1323 |
[100] | Jeong J. H., Park T. G., Bioconjugate Chem., 2001, 12(6), 917—923 |
[101] | Butcher N. J., Mortimer G. M., Minchin R. F., Nat. Nanotechnol., 2016, 11(4), 310—311 |
[102] | Ding K., Alemdaroglu F. E., Borsch M., Berger R., Herrmann A., Angew. Chem. Int. Ed., 2007, 46(7), 1172—1175 |
[103] | Liu H., Kwong B., Irvine D. J., Angew. Chem. Int. Ed., 2011, 50(31), 7052—7055 |
[104] | Liu H., Moynihan K. D., Zheng Y., Szeto G. L., Li A. V., Huang B., Van Egeren D. S., Park C., Irvine D. J., Nature, 2014, 507(7493), 519—522 |
[105] | Perrault S. D., Shih W. M., ACS Nano, 2014, 8(5), 5132—5140 |
[106] | Sun L., Gao Y., Wang Y., Wei Q., Shi J., Chen N., Li D., Fan C., Chem. Sci., 2018, 9(27), 5967—5975 |
[107] | Bagheri Y., Chedid S., Shafiei F., Zhao B., You M., Chem. Sci., 2019, 10(48), 11030—11040 |
[1] | 何峰, 白金海, 陈淑贤, 谭小蓓. 阿舒假囊酵母合成的精油及其抗真菌活性与机理[J]. 高等学校化学学报, 2019, 40(2): 272. |
[2] | 张正伟, 丁明珠, 元英进. 紫杉二烯生物合成模块与不同底盘的适配[J]. 高等学校化学学报, 2014, 35(1): 75. |
[3] | 贾云婧, 赵鹃, 丁明珠, 元英进. 青蒿二烯功能模块与酵母底盘的适配性[J]. 高等学校化学学报, 2013, 34(12): 2765. |
[4] | 任天瑞 ; 赵保峰 ; 胡远东 ; 次素琴 . GABAA受体萜类抑制剂构效关系研究[J]. 高等学校化学学报, 2006, 27(7): 1262. |
[5] | 胡耀武, 何德亮, 刘歆益, 董豫, 王昌燧, 高明奎, 兰玉富 . 山东藤州西公桥遗址人骨的元素分析[J]. 高等学校化学学报, 2006, 27(6): 1075. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||