高等学校化学学报 ›› 2019, Vol. 40 ›› Issue (11): 2281-2285.doi: 10.7503/cjcu20190443

• 分析化学 • 上一篇    下一篇

基于石英纳米孔道的单颗粒尺寸分布分析

芦思珉1,于汝佳1,*(),龙亿涛2,*()   

  1. 1. 华东理工大学化学与分子工程学院, 上海 200237
    2. 生命分析化学国家重点实验室, 南京大学化学化工学院, 南京 210023
  • 收稿日期:2019-08-05 出版日期:2019-11-10 发布日期:2019-10-11
  • 通讯作者: 于汝佳,龙亿涛 E-mail:yurujia@dcust.edu.cn;yitaolong@nju.edu.cn
  • 基金资助:
    国家自然科学基金(21834001);中国博士后科学基金资助(2018M640349)

Single Nanoparticle Sizing Based on the Confined Glass Nanopore

LU Simin1,YU Rujia1,*(),LONG Yitao2,*()   

  1. 1. School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
    2. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
  • Received:2019-08-05 Online:2019-11-10 Published:2019-10-11
  • Contact: YU Rujia,LONG Yitao E-mail:yurujia@dcust.edu.cn;yitaolong@nju.edu.cn
  • Supported by:
    ? Supported by the National Natural Science Foundation of China(No.21834001) and the China Postdoctoral Science Foundation(21834001);The China Postdoctoral Science Foundation(2018M640349)

摘要:

发展了一种基于石英纳米孔道的单颗粒电化学动态分析方法, 用于单个CdSe/ZnS量子点纳米颗粒的尺寸分布分析. 其机制是向石英纳米孔道两端施加电压, 表面带有正电荷的单个CdSe/ZnS量子点纳米颗粒在电场力驱动下由管内向管外运动, 当量子点纳米颗粒穿过纳米孔道尖端狭小的限域空间时, 其表面正电荷使石英纳米孔道内电荷密度增加, 孔道内的电化学限域效应进一步将电荷密度增加的信息放大并转变为可读的离子流增强信号. 通过对动态离子流信号解析可实时获取具有2种不同尺寸的量子点纳米颗粒所导致的2类过孔事件信息, 从而对在限域空间内运动的纳米颗粒进行尺寸分布分析.

关键词: 石英纳米孔道, 电化学限域, 单颗粒尺寸分布分析, CdSe/ZnS量子点

Abstract:

An electrochemically analytical method based on the glass nanopore was proposed to determine the single CdSe/ZnS quantum dots(CdSe/ZnS QDs) with various sizes. Potential is focused near the tip of electrochemically confined nanopore, and CdSe/ZnS QDs with positive surface charge are driven out of the glass nanopore. In consequence, the positive surface charges of CdSe/ZnS QDs leads to the ionic current redistribution, which contributes to the increase in the ionic current. The difference of the increase in the ionic current is resulted from the difference of surface charges. The results reveal the capability of glass nanopore for the real-time single nanoparticle sizing.

Key words: Glass nanopore, Electrochemically confined effect, Single nanoparticle sizing, CdSe/ZnS quantum dots

中图分类号: