高等学校化学学报 ›› 2014, Vol. 35 ›› Issue (5): 1106-1110.doi: 10.7503/cjcu20130946

• 高分子化学 • 上一篇    下一篇

基于胶体晶体刻蚀构筑含金纳米碗的柱状结构阵列

薛培宏1,3, 王铁强2,3(), 艾斌3, 叶顺盛3, 李东风1(), 张俊虎3   

  1. 1. 长春工业大学化学与生命科学学院, 长春130012
    2. 东北大学理学院分子科学与工程研究所, 沈阳 110004
    3. 吉林大学化学学院, 超分子结构与材料国家重点实验室, 长春 130012
  • 收稿日期:2013-09-25 出版日期:2014-05-10 发布日期:2014-04-14
  • 作者简介:联系人简介: 李东风, 男, 博士, 教授, 博士生导师, 主要从事有机合成/功能材料研究. E-mail:lidongfeng@mail.ccut.edu.cn; 王铁强, 男, 博士, 讲师, 主要从事响应性聚合物微结构研究. E-mail:caswtq@163.com
  • 基金资助:
    国家自然科学基金(批准号: 21222406)资助

Fabrication of the Columnar Structure with Gold Nanobowl Arrays Based on Colloidal Lithography

XUE Peihong1,3, WANG Tieqiang2,3,*(), AI Bin3, YE Shunsheng3, LI Dongfeng1,*(), ZHANG Junhu3   

  1. 1. School of Chemistry and Bioscience, Changchun University of technology, Changchun 130012, China
    2. Research Center for Molecular Science and Engineering, College of Science,Northeastern University, Shenyang 110004, China
    3. State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry,Jilin University, Changchun 130012, China
  • Received:2013-09-25 Online:2014-05-10 Published:2014-04-14
  • Contact: WANG Tieqiang,LI Dongfeng E-mail:caswtq@163.com;lidongfeng@mail.ccut.edu.cn

摘要:

以二氧化硅微球为掩板, 利用各向异性等离子体刻蚀技术对光固化树脂薄膜进行选择性刻蚀, 制备出微纳级的顶端带凹陷的柱状结构. 在材料表面蒸镀一层金后, 得到微纳米级柱顶端带有金纳米碗的特殊结构. 通过调整刻蚀时间可以改变光固化树脂薄膜表面的柱状结构的高度. 随着柱状结构高度的增加, 材料的特征峰从500 nm红移至760 nm. 运用时域有限差分(FDTD)方法对这种含贵金属结构的电场分布进行模拟, 发现在金纳米碗状结构的边缘处存在高强度的电场, 这是材料特征峰产生的原因. 这种由材料表面结构变化导致材料在光谱中特征峰迁移的现象在传感、 光通讯及小型化光学器件和药物筛选等领域具有潜在应用的价值.

关键词: 胶体晶体, 等离子体刻蚀, 光固化树脂, 金纳米碗, 表面等离子体共振

Abstract:

A novel method was developed to fabricate the structure of a bowl on the top of column on nano/micro scale by selectively etching the photoresist oligomer film using the silica microspheres as masks. The gold nanobowl was formed on the top of the columnar structure as depositing a layor of Au on the surface of sample. By adjusting etching time, the dimension of columnar structure can be controlled. The characteristic transmission band of the material shows a obvious red shift from 500 nm to 760 nm when the height of the columnar structure increases. To investigate the optical property caused by the unique structure and the distribution of electric field around the noble metal, the method of the finite difference time domain was used. The high intensity of electric field was found at the edges and bottom of the gold nanobowl, which is the main influencing factor of the red shift.

Key words: Colloidal crystal, Plasma etching, Photoresist oligomer, Gold nanobowl, Surface plasmon resonance

中图分类号: