Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (4): 20240544.doi: 10.7503/cjcu20240544
• Organic Chemistry • Previous Articles Next Articles
LIU Dongmei, XU Yuanqiang, XIA Chao, ZHENG Jingjing, SU Xianbin()
Received:
2024-12-18
Online:
2025-04-10
Published:
2025-01-18
Contact:
SU Xianbin
E-mail:davidsu@njtech.edu.cn
Supported by:
CLC Number:
TrendMD:
LIU Dongmei, XU Yuanqiang, XIA Chao, ZHENG Jingjing, SU Xianbin. Continuous Flow Liquid Phase Synthesis of Thymopentin Using Fluoride-labile Hydrophobic Tag[J]. Chem. J. Chinese Universities, 2025, 46(4): 20240544.
Entry | Glass microchannel reactor | Packed⁃bed reactor | Liquid⁃liquid Separator |
---|---|---|---|
Materials | Silicon glass | Stainless steel | OB⁃900 Hydrophobic PTFE membrane |
External dimension/mm | 152.4×152.4×11.0 | Φ10×100 | 77×77×29 |
Volume/mL | 3 | 7.85 | 0.45 |
Maximum pressure/MPa | 2 | — | 2 |
Suitable temperature/℃ | -25—200 | — | < 90 |
Filling material | — | 5% Pd/C catalyst; 6g | — |
Table 1 Detailed parameters of microchannels, packed bed reactors and liquid-liquid separators
Entry | Glass microchannel reactor | Packed⁃bed reactor | Liquid⁃liquid Separator |
---|---|---|---|
Materials | Silicon glass | Stainless steel | OB⁃900 Hydrophobic PTFE membrane |
External dimension/mm | 152.4×152.4×11.0 | Φ10×100 | 77×77×29 |
Volume/mL | 3 | 7.85 | 0.45 |
Maximum pressure/MPa | 2 | — | 2 |
Suitable temperature/℃ | -25—200 | — | < 90 |
Filling material | — | 5% Pd/C catalyst; 6g | — |
Entry | Cbz⁃AA⁃OH | Solvent | Temp./℃ | Flow rate, X/(mL∙min-1) | Residence time a /s | Conversion b (%) |
---|---|---|---|---|---|---|
1 | Cbz⁃Val⁃OH | DCM | RT | 5 | 18 | >99 |
2 | Cbz⁃Val⁃OH | THF | RT | 5 | 18 | >99 |
3 | Cbz⁃Val⁃OH | 2⁃MeTHF | RT | 5 | 18 | 78 |
4 | Cbz⁃Val⁃OH | EA | RT | 5 | 18 | >99 |
5 | Cbz⁃Val⁃OH | EA | 40 | 5 | 18 | >99 |
6 | Cbz⁃Val⁃OH | EA | 60 | 5 | 18 | >99 |
7 | Cbz⁃Val⁃OH | EA | RT | 8 | 11.3 | >99 |
8 | Cbz⁃Val⁃OH | EA | RT | 10 | 9 | >99 |
Table 2 Optimization of continuous flow coupling conditions
Entry | Cbz⁃AA⁃OH | Solvent | Temp./℃ | Flow rate, X/(mL∙min-1) | Residence time a /s | Conversion b (%) |
---|---|---|---|---|---|---|
1 | Cbz⁃Val⁃OH | DCM | RT | 5 | 18 | >99 |
2 | Cbz⁃Val⁃OH | THF | RT | 5 | 18 | >99 |
3 | Cbz⁃Val⁃OH | 2⁃MeTHF | RT | 5 | 18 | 78 |
4 | Cbz⁃Val⁃OH | EA | RT | 5 | 18 | >99 |
5 | Cbz⁃Val⁃OH | EA | 40 | 5 | 18 | >99 |
6 | Cbz⁃Val⁃OH | EA | 60 | 5 | 18 | >99 |
7 | Cbz⁃Val⁃OH | EA | RT | 8 | 11.3 | >99 |
8 | Cbz⁃Val⁃OH | EA | RT | 10 | 9 | >99 |
Entry | Flow rate, X/(mL∙min-1) | H2 pressure/MPa | Temp./℃ | Solvent | Residence time a /s | Conversion b (%) |
---|---|---|---|---|---|---|
1 | 2 | 1.0 | RT | EA | 141.3 | >99 |
2 | 5 | 1.0 | RT | EA | 56.5 | >99 |
3 | 10 | 1.0 | RT | EA | 28.3 | >99 |
4 | 15 | 1.0 | RT | EA | 18.8 | 95 |
5 | 10 | 1.0 | 40 | EA | 28.3 | >99 |
6 | 10 | 1.0 | 60 | EA | 28.3 | >99 |
7 | 10 | 0.5 | RT | EA | 28.3 | 91 |
8 | 10 | 1.0 | RT | MeOH | 28.3 | >99 |
9 | 10 | 1.0 | RT | THF | 28.3 | 82 |
Table 3 Optimization of continuous flow Cbz-deprotection conditions
Entry | Flow rate, X/(mL∙min-1) | H2 pressure/MPa | Temp./℃ | Solvent | Residence time a /s | Conversion b (%) |
---|---|---|---|---|---|---|
1 | 2 | 1.0 | RT | EA | 141.3 | >99 |
2 | 5 | 1.0 | RT | EA | 56.5 | >99 |
3 | 10 | 1.0 | RT | EA | 28.3 | >99 |
4 | 15 | 1.0 | RT | EA | 18.8 | 95 |
5 | 10 | 1.0 | 40 | EA | 28.3 | >99 |
6 | 10 | 1.0 | 60 | EA | 28.3 | >99 |
7 | 10 | 0.5 | RT | EA | 28.3 | 91 |
8 | 10 | 1.0 | RT | MeOH | 28.3 | >99 |
9 | 10 | 1.0 | RT | THF | 28.3 | 82 |
Entry | Amino acid | Residues of amino acids in the organic phase a (%) | |||||
---|---|---|---|---|---|---|---|
Washing times of separating funnel b | Microchannel washing flow rate ratio (reaction liquid vs. washing liquid) | ||||||
1 | 2 | 3 | 2∶1 | 1∶1 | 1∶2 | ||
1 | Cbz⁃Val⁃OH | 3.4 | 1.3 | 0 | 1.1 | 0 | 0 |
2 | Cbz⁃Tyr(tBu)⁃OH | 8.9 | 3.1 | 0.7 | 7.1 | 0.2 | 0 |
3 | Cbz⁃Asp(OtBu)⁃OH | 10.2 | 3.9 | 1.3 | 8.0 | 0.3 | 0 |
4 | Cbz⁃Lys(Boc)⁃OH | 10.1 | 4.2 | 1.4 | 6.5 | 0.2 | 0 |
5 | Cbz⁃Arg(Pbf)⁃OH | 17.4 | 10.5 | 4.2 | 22.5 | 11.3 | 3.7 |
6 | Cbz⁃His(Trt)⁃OH | 18.5 | 11.4 | 5.4 | 19.4 | 10.1 | 2.4 |
7 | NH2⁃Arg(Pbf)⁃OH | 6.7 | 1.7 | 0 | 2.5 | 0 | 0 |
8 | NH2⁃His(Trt)⁃OH | 8.5 | 2.1 | 0 | 2.1 | 0 | 0 |
Table 4 Comparison of washing effect
Entry | Amino acid | Residues of amino acids in the organic phase a (%) | |||||
---|---|---|---|---|---|---|---|
Washing times of separating funnel b | Microchannel washing flow rate ratio (reaction liquid vs. washing liquid) | ||||||
1 | 2 | 3 | 2∶1 | 1∶1 | 1∶2 | ||
1 | Cbz⁃Val⁃OH | 3.4 | 1.3 | 0 | 1.1 | 0 | 0 |
2 | Cbz⁃Tyr(tBu)⁃OH | 8.9 | 3.1 | 0.7 | 7.1 | 0.2 | 0 |
3 | Cbz⁃Asp(OtBu)⁃OH | 10.2 | 3.9 | 1.3 | 8.0 | 0.3 | 0 |
4 | Cbz⁃Lys(Boc)⁃OH | 10.1 | 4.2 | 1.4 | 6.5 | 0.2 | 0 |
5 | Cbz⁃Arg(Pbf)⁃OH | 17.4 | 10.5 | 4.2 | 22.5 | 11.3 | 3.7 |
6 | Cbz⁃His(Trt)⁃OH | 18.5 | 11.4 | 5.4 | 19.4 | 10.1 | 2.4 |
7 | NH2⁃Arg(Pbf)⁃OH | 6.7 | 1.7 | 0 | 2.5 | 0 | 0 |
8 | NH2⁃His(Trt)⁃OH | 8.5 | 2.1 | 0 | 2.1 | 0 | 0 |
Method | SPPS | CF⁃LPPS |
---|---|---|
Purity(HPLC) | 92.5% | 98.8% |
Yield | 80% | 78% |
Table 5 Results of thymopentin synthesis via SPPS and CF-LPPS
Method | SPPS | CF⁃LPPS |
---|---|---|
Purity(HPLC) | 92.5% | 98.8% |
Yield | 80% | 78% |
SPPS | CF⁃LPPS | ||
---|---|---|---|
CTC Resin (1 mmol·g-1) | 1.00 | PTESE | 0.24 |
Fmoc⁃AA⁃OH | 8.09 | Cbz⁃AA⁃OH | 2.76 |
Coupling reagent | 4.23 | Coupling reagent | 1.82 |
DMF | 269.18 | EA | 1.80 |
Piperidine | 4.91 | Pd/C | 0.006 |
Table 6 Materials consumption for thymopentin synthesis
SPPS | CF⁃LPPS | ||
---|---|---|---|
CTC Resin (1 mmol·g-1) | 1.00 | PTESE | 0.24 |
Fmoc⁃AA⁃OH | 8.09 | Cbz⁃AA⁃OH | 2.76 |
Coupling reagent | 4.23 | Coupling reagent | 1.82 |
DMF | 269.18 | EA | 1.80 |
Piperidine | 4.91 | Pd/C | 0.006 |
1 | Wang L., Wang N. X., Zhang W. P., Cheng X. R., Yan Z. B., Shao G., Wang X., Wang R., Fu C. Y., Signal Transduct. Tar., 2022, 7(1), 48 |
2 | Cabri W, Cantelmi P, Corbisiero D, Fantoni T, Ferrazzano L, Martelli G, Mattellone A, Tolomelli A., Front. Mol. Biosci., 2021, 8, 697586 |
3 | Rasmussen J. H., Bioorg. Med. Chem., 2018, 26(10), 2914—2918 |
4 | Al Musaimi O., de la Torre B. G., Albericio F., Green Chem., 2020, 22(4), 996—1018 |
5 | Liu H., Liu D. M., Sun H. T., Xia C., Su X. B., Chem. J. Chinese Universities, 2024, 45(7), 20240024 |
刘豪, 刘冬梅, 孙浩田, 夏超, 苏贤斌. 高等学校化学学报, 2024, 45(7), 20240024 | |
6 | Martin V., Egelund P. H. G., Johansson H., Le Quement S. T., Wojcik F., Pedersen D. S., RSC Adv., 2020, 10(69), 42457—42492 |
7 | Clapperton A. M., Vera K. N. M., Babi J., Tran H., ACS Sustainable Chem. Eng., 2023, 11(35), 13024—13032 |
8 | Meroni D., Djellabi R., Ashokkumar M., Bianchi C. L., Boffito D. C., Chem. Rev., 2022, 122(3), 3219—3258 |
9 | Raheem S. J., Schmidt B. W., Solomon V. R., Salih A. K., Price E. W., Bioconjugate Chem., 2021, 32(7), 1204—1213 |
10 | Collins J. M., Singh S. K., White T. A., Cesta D. J., Simpson C. L., Tubb L. J., Houser C. L., Nat. Commun., 2023, 14(1), 8168 |
11 | Zhang L. M., Jiang Z. Q., Yang X., Qian Y. X., Wang M. X., Wu S., Li L. Y., Jia F., Wang Z. H., Hu Z. Y., Zhao M. Z., Tang X. Y., Li G., Shang H. B., Chen X. Y., Wang W. Z., Adv. Mater., 2023, 35(2), 2207330 |
12 | Martelli G., Cantelmi P., Palladino C., Mattellone A., Corbisiero D., Fantoni T., Tolomelli A., Macis M., Ricci A., Cabri W., Ferrazzano L., Green Chem., 2021, 23(20), 8096—8107 |
13 | Yano S., Mori T., Kubota H., Molecules, 2021, 26(12), 3497 |
14 | Li H. D., Wang L. J., Zhang L. Y., Yang Y. X., Jin Y.K., Zhang J., Liang T. G., Sustain. Chem. Pharm., 2024, 41, 101684 |
15 | Sharma A., Kumar A., de la Torre B. G., Albericio F., Chem. Rev., 2022, 122(16), 13516—13546 |
16 | Okada Y., Takasawa R., Kubo D., Iwanaga N., Fujita S., Suzuki K., Suzuki H., Kamiya H., Chiba K., Org. Process Res. Dev., 2019, 23(11), 2576—2581 |
17 | Li H. D., Chao J., Zhang Z. X., Tian G., Li J., Chang N. H., Qin C. G., Org. Lett., 2020, 22(9), 3323—3328 |
18 | Wu A., Ramakrishna I., Hattori T., Yamamoto H., Org. Biomol. Chem., 2022, 20(44), 8685—8692 |
19 | Masui H., Fuse S., Org. Process Res. Dev., 2022, 26(6), 1751—1765 |
20 | Hartrampf N., Saebi A., Poskus M., Gates Z. P., Callahan A. J., Cowfer A. E., Hanna S., Antilla S., Schissel C. K., Quartararo A. J., Ye X., Mijalis A. J., Simon M. D., Loas A., Liu S., Jessen C., Nielsen T. E., Pentelute B. L., Science, 2020, 368(6494), 980—987 |
21 | Fuse S., Mifune Y., Nakamura H., TanakaH., Nat. Commun., 2016, 7, 13491 |
22 | Otake Y., Adachi K., Yamashita Y., Iwanaga N., Sunakawa H., Shamoto T., Ogawa J. I., Ito A., Kobayashi Y., Masuya K., Fuse S., Kuboa D., Itoh H., React. Chem. Eng., 2023, 8(4), 863—870 |
23 | Sieber P., Helv. Chim. Acta, 1977, 60(8), 2711—2716 |
24 | Wagner M., Kunz H., Synlett, 2000, 2000(3), 400—402 |
25 | Seifert C. W., Paniagua A., White G. A., Cai L., Li G. G., Eur. J. Org. Chem., 2016, 2016(9), 1714—1719 |
26 | Egelund P. H. G., Jadhav S., Martin V., Castro H. J., Richner F., Le Quement S. T., Dettner F., Lechner C., Schoenleber R., Pedersen D. S., ACS Sustainable Chem. Eng., 2021, 9(42), 14202—14215 |
27 | Osako T., Torii K., Tazawaa A., Uozumi Y., RSC. Adv., 2015, 5(57), 45760—45766 |
28 | Kekessie I., Wegner K., Martinez I., Kopach M. E., White T. D., Tom J. K., Kenworthy M. N., Gallou F., Lopez J., Koenig S. G., Payne P. R., Eissler S., Arumugam B., Li C. F., Mukherjee S., Isidro⁃Llobet A., Ludemann⁃Hombourger O., Richardson P., Kittelmann J., Pedersen D. S., van den Bos L. J., J. Org. Chem., 2024, 89(7), 4261—4282 |
29 | Constable D. J. C., Jimenez⁃Gonzalez C., Henderson R. K., Org. Process Res. Dev., 2007, 11(1), 133—137 |
30 | Martin V., Jadhav S., Egelund P. H. G., Liffert R., Castro H. J., Krüger T., Haselmann K. F., Le Quement S. T., Albericio F., Dettner F., Lechner C., Schönleber R., Pedersen D. S., Green Chem., 2021, 23(9), 3295—3311 |
[1] | LIU Hao, LIU Dongmei, SUN Haotian, XIA Chao, SU Xianbin. Continuous Flow Liquid-phase Vialox Peptide Synthesis Using Hydrophobic Silyl Tag [J]. Chem. J. Chinese Universities, 2024, 45(7): 20240024. |
[2] | HUANG Dingmin, SUN Haotian, WANG Zhenwei, LIU Hao, SU Xianbin. 3-Quinoline Boric Acid as an Efficient Catalyst for the Direct Amidation of Carboxylic Acids at Room Temperature [J]. Chem. J. Chinese Universities, 2023, 44(6): 20230004. |
[3] | LI Shijie,YANG Yang,CUI Yingying,SU Xianbin. High Efficient and Green Approach to the Synthesis of Leuprolide in Continuous-flow Microreactor† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1559. |
[4] | LIU Bingtong, ZHUANG Yongliang. Structural Characterization of Peptide Calcium Chelate VGLPNSR-Ca and Its Calcium Absorption Ability in Caco-2 Cell Monolayer [J]. Chem. J. Chinese Universities, 2019, 40(8): 1643. |
[5] | FAN Jiahui,BIAN Yanan,SU Xianbin. Synthesis of Liraglutide Through Threonine Ligation† [J]. Chem. J. Chinese Universities, 2018, 39(12): 2679. |
[6] | LIU Fei, XIE Qing, LIU Teli, XU Xiaoxia, GUO Xiaoyi, LI Nan, ZHU Hua, YANG Zhi. Radio-synthesis, Quality Control and Micro-PET Imaging of 64Cu-DOTA-TATE† [J]. Chem. J. Chinese Universities, 2018, 39(4): 695. |
[7] | CAO Yuhui, ZHANG Juanjuan, WANG Zaiyang, ZHAO Yuanhui. Separation and Identification of Oyster Peptide Modified by Plastein Reaction and Characterization of Peptide-zinc Complexes† [J]. Chem. J. Chinese Universities, 2018, 39(3): 470. |
[8] | GE Weiwei, CHEN Jing, ZONG Liang, LI Jian, SUI Shaohui, WU Weihui, ZHANG Ming, DONG Junjun. Efficient Oxidation of Thiols to Corresponding Disulfides Catalyzed by Hemin† [J]. Chem. J. Chinese Universities, 2017, 38(6): 1052. |
[9] | ZHENG Xi, LIANG Guodong, WANG Chao, LIU Keliang. Construction of Isopeptide Bridge-tethered NHR-trimeric Coiled-coil in MERS-CoV Membrane Fusion Protein† [J]. Chem. J. Chinese Universities, 2016, 37(9): 1643. |
[10] | CHENG Siqi, LIANG Guodong, JIANG Xifeng, WANG Chao, LIU Keliang. Design, Sythesis and Biological Evaluation of Polyphenol-α-helical Peptide Conjugates as Potent HIV-1 Fusion Inhibitors† [J]. Chem. J. Chinese Universities, 2016, 37(7): 1287. |
[11] | LI Xue, LAI Wenqing, JIANG Xifeng, WANG Chao, LIU Keliang. Design, Synthesis and Activity Screening of Isopeptide Bond-tethered N Peptides as HIV-1 Fusion Inhibitors† [J]. Chem. J. Chinese Universities, 2016, 37(5): 881. |
[12] | ZHANG Sha, SHI Weiguo, WANG Chao, CAI Lifeng, ZHENG Baohua, WANG Kun, FENG Siliang, JIA Qiyan, LIU Keliang. Synthesis of Cholesterol Conjugated Non-native Derived Heptad Repeat Sequence Peptides as Potent HIV-1 Fusion Inhibitors† [J]. Chem. J. Chinese Universities, 2014, 35(12): 2542. |
[13] | ZANG Hao, SUN Jiaming, HUANG Xiaoguang, JI Yang, DAI Tingting, GAO Xiaochen, LI Xiaodong, ZHANG Hui. Synthesis and Biological Activity of N-substituted Carnosine Amide Derivatives† [J]. Chem. J. Chinese Universities, 2014, 35(12): 2567. |
[14] | LIANG Guodong, WANG Chao, SHI Weiguo, WANG Kun, JIANG Xifeng, XU Xiaoyu, LIU Keliang. Design, Synthesis and Activity Prescreening of Small Molecule-Peptide Conjugates as HIV-1 Fusion Inhibitors Targeting gp41† [J]. Chem. J. Chinese Universities, 2014, 35(10): 2100. |
[15] | SHEN Qingqing, ZENG Mingyong, ZHAO Yuanhui. Modification of Acaudina Molpadioides Hydrolysates by Plastein Reaction and Preparation of ACE Inhibitory Peptides† [J]. Chem. J. Chinese Universities, 2014, 35(5): 965. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||