Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (1): 20240260.doi: 10.7503/cjcu20240260
• Review • Previous Articles
YAN Ziliang, LI Bei(), DAI Yunlu(
)
Received:
2024-05-28
Online:
2025-01-10
Published:
2024-08-12
Contact:
DAI Yunlu
E-mail:beili@um.edu.mo;yldai@um.edu.mo
Supported by:
CLC Number:
TrendMD:
YAN Ziliang, LI Bei, DAI Yunlu. Research Progress in Supramolecular Drug Delivery Nanosystems Based on Polyphenols[J]. Chem. J. Chinese Universities, 2025, 46(1): 20240260.
Types of polyphenols | Loaded substance | Supramolecular interaction | Application | Ref. |
---|---|---|---|---|
Catechol | DOX, Zn2+ | Hydrophobic interactions, Coordination interactions | Tumor treatment | [ |
EGCG, Catechol | W6+ | Hydrophobic interactions, Coordination interactions | Tumor treatment | [ |
Gallic acid, Catechol | Hf4+, Hemoglobin | Hydrophobic interactions, Coordination interactions | Tumor treatment | [ |
Rosmarinic acid | Dexamethasone | Hydrophobic interactions | Colitis | [ |
Quercetin | None | Hydrophobic interactions, Hydrogen Bond | Colitis | [ |
TA | Green fluorescent protein | Hydrophobic interactions | Heart disease | [ |
Salvianolic acid B, Catechol | Ca2+ | Hydrophobic interactions, Coordination interactions | Renal fibrosis | [ |
EGCG | Fe3+, DOX | Hydrophobic interactions, Coordination interactions, π⁃π interactions | Tumor treatment | [ |
Polydopamine | Zn2+, DOX | Coordination interactions | Tumor treatment | [ |
TA | BSA | Hydrophobic interactions, Hydrogen Bond | Colitis | [ |
Catechol | 5⁃Aza, W6+ | Hydrophobic interactions, Coordination interactions | Tumor treatment | [ |
TA | DOX | Hydrophobic interactions, Hydrogen Bond | Tumor treatment | [ |
EGCG | DOX, Fe3+ | Hydrophobic interactions, Coordination interactions, π⁃π interactions | Tumor treatment | [ |
Procyanidin | Fe3+ | Hydrophobic interactions, Coordination interactions, Hydrogen Bond | Colitis | [ |
Table 1 A review of the types of drugs loaded in polyphenol-based supramolecular nanodrug delivery systems, the types of interaction forces involved, and their biomedical applications
Types of polyphenols | Loaded substance | Supramolecular interaction | Application | Ref. |
---|---|---|---|---|
Catechol | DOX, Zn2+ | Hydrophobic interactions, Coordination interactions | Tumor treatment | [ |
EGCG, Catechol | W6+ | Hydrophobic interactions, Coordination interactions | Tumor treatment | [ |
Gallic acid, Catechol | Hf4+, Hemoglobin | Hydrophobic interactions, Coordination interactions | Tumor treatment | [ |
Rosmarinic acid | Dexamethasone | Hydrophobic interactions | Colitis | [ |
Quercetin | None | Hydrophobic interactions, Hydrogen Bond | Colitis | [ |
TA | Green fluorescent protein | Hydrophobic interactions | Heart disease | [ |
Salvianolic acid B, Catechol | Ca2+ | Hydrophobic interactions, Coordination interactions | Renal fibrosis | [ |
EGCG | Fe3+, DOX | Hydrophobic interactions, Coordination interactions, π⁃π interactions | Tumor treatment | [ |
Polydopamine | Zn2+, DOX | Coordination interactions | Tumor treatment | [ |
TA | BSA | Hydrophobic interactions, Hydrogen Bond | Colitis | [ |
Catechol | 5⁃Aza, W6+ | Hydrophobic interactions, Coordination interactions | Tumor treatment | [ |
TA | DOX | Hydrophobic interactions, Hydrogen Bond | Tumor treatment | [ |
EGCG | DOX, Fe3+ | Hydrophobic interactions, Coordination interactions, π⁃π interactions | Tumor treatment | [ |
Procyanidin | Fe3+ | Hydrophobic interactions, Coordination interactions, Hydrogen Bond | Colitis | [ |
1 | De Greef T. F., Meijer E. W., Nature, 2008, 453, 171—173 |
2 | De Greef T. F., Smulders M. M., Wolffs M., Schenning A. P., Sijbesma R. P., Meijer E. W., Chem. Rev., 2009, 109, 5687—5754 |
3 | Aida T., Meijer E. W., Stupp S. I., Science, 2012, 335, 813—817 |
4 | Lehn J. M., Europ. Rev., 2009, 17, 263—280 |
5 | Webber M. J., Appel E. A., Meijer E. W., Langer R., Nat. Mater., 2016, 15, 13—26 |
6 | Webber M. J., Langer R., Chem. Soc. Rev., 2017, 46, 6600—6620 |
7 | Qin B., Yin Z., Tang X., Zhang S., Wu Y., Xu J. F., Zhang X., Prog. Polym. Sci., 2020, 100, 101167 |
8 | Peng H. Q., Zhu W., Guo W. J., Li Q., Ma S., Bucher C., Liu B., Ji X., Huang F., Sessler J. L., Prog. Polym. Sci., 2023, 137, 101635 |
9 | Liu T., Pan P., Shi H., Feng J., Zhang X. Z., J. Polym. Sci., 2023, 62, 297—323 |
10 | Jiang X., Zhang J., Lo P. K., Mao Z., Adv. NanoBiomed Res., 2023, 3, 2200168 |
11 | Zhou J., Lin Z., Ju Y., Rahim M. A., Richardson J. J., Caruso F., Acc. Chem. Res., 2020, 53, 1269—1278 |
12 | Ejima H., Richardson J. J., Liang K., Best J. P., van Koeverden M. P., Such G. K., Cui J., Caruso F., Science, 2013, 341, 154—157 |
13 | Zhou J., Lin Z., Penna M., Pan S., Ju Y., Li S., Han Y., Chen J., Lin G., Richardson J. J., Yarovsky I., Caruso F., Nat. Commun., 2020, 11, 4804 |
14 | Guo J., Tardy B. L., Christofferson A. J., Dai Y., Richardson J. J., Zhu W., Hu M., Ju Y., Cui J., Dagastine R. R., Yarovsky I., Caruso F., Nat. Nanotechnol., 2016, 11, 1105—1111 |
15 | Xu W., Lin Z., Pan S., Chen J., Wang T., Cortez⁃Jugo C., Caruso F., Angew. Chem. Int. Ed., 2023, 62, e202312925 |
16 | Yu X., Li B., Yan J., Li W., Tian H., Wang G., Zhou S., Dai Y., Biomaterials, 2024, 307, 122512 |
17 | Wang G., Yan J., Tian H., Li B., Yu X., Feng Y., Li W., Zhou S., Dai Y., Adv. Mater., 2024, 36, e2312588 |
18 | Tian Y., Tian H., Li B., Feng C., Dai Y., Small, 2024, 20, e2309850 |
19 | Feng Y., Wang G., Li W., Yan J., Yu X., Tian H., Li B., Dai Y., Adv. Healthc. Mater., 2024, 13, e2302811 |
20 | Xu Z., Liu G., Zheng L., Wu J., Nano Res., 2022, 16, 905—916 |
21 | Li J., Li J., Wei J., Zhu X., Qiu S., Zhao H., ACS Appl. Mater. Interfaces, 2021, 13, 10446—10456 |
22 | Venkatesan R., Sivaprakash P., Kim I., Eldesoky G. E., Kim S. C., J. Environ. Chem. Eng., 2023, 11, 110194 |
23 | Wu X., Wang L., Tang L., Wang L., Cao S., Wu Q., Zhang Z., Li L., J. Funct. Foods, 2018, 46, 312—319 |
24 | Luo R., Lin M., Zhang C., Shi J., Zhang S., Chen Q., Hu Y., Zhang M., Zhang J., Gao F., Food Chem., 2020, 330, 127241 |
25 | Chung C. H., Jung W., Keum H., Kim T. W., Jon S., ACS Nano, 2020, 14, 6887—6896 |
26 | Qi Y., Li J., Nie Q., Gao M., Yang Q., Li Z., Li Q., Han S., Ding J., Li Y., Zhang J., Biomaterials, 2021, 275, 120952 |
27 | Tan H., Sun J., Jin D., Song J., Lei M., Antoshin A., Chen X., Yin M., Qu X., Liu C., Biomater. Sci., 2020, 8, 3334—3347 |
28 | Chen R., Zhu C., Xu L., Gu Y., Ren S., Bai H., Zhou Q., Liu X., Lu S., Bi X., Li W., Jia X., Chen Z., Biomaterials, 2021, 274, 120855 |
29 | Shin M., Lee H. A., Lee M., Shin Y., Song J. J., Kang S. W., Nam D. H., Jeon E. J., Cho M., Do M., Park S., Lee M. S., Jang J. H., Cho S. W., Kim K. S., Lee H., Nat. Biomed. Eng., 2018, 2, 304—317 |
30 | Rahim M. A., Kristufek S. L., Pan S., Richardson J. J., Caruso F., Angew. Chem. Int. Ed. Engl., 2019, 58, 1904—1927 |
31 | Guo J., Ping Y., Ejima H., Alt K., Meissner M., Richardson J. J., Yan Y., Peter K., von Elverfeldt D., Hagemeyer C. E., Caruso F., Angew. Chem. Int. Ed., 2014, 53, 5546—5551 |
32 | Li S. C., Wang J. G., Jacobson P., Gong X. Q., Selloni A., Diebold U., J. Am. Chem. Soc., 2009, 131, 980—984 |
33 | Wei W., Petrone L., Tan Y., Cai H., Israelachvili J. N., Miserez A., Waite J. H., Adv. Funct. Mater., 2016, 26, 3496—3507 |
34 | Jankovic I. A., Saponjic Z. V., Dzunuzovic E. S., Nedeljkovic J. M., Nanoscale Res. Lett., 2009, 5, 81—88 |
35 | Tian Y., Sang W., Tian H., Xie L., Wang G., Zhang Z., Li W., Dai Y., Adv. Funct. Mater., 2022, 32, 2205690 |
36 | Rahim M. A., Ejima H., Cho K. L., Kempe K., Müllner M., Best J. P., Caruso F., Chem. Mater., 2014, 26, 1645—1653 |
37 | Muzolf M., Szymusiak H., Gliszczynska⁃Swiglo A., Rietjens I. M., Tyrakowska B., J. Agric. Food Chem., 2008, 56, 816—823 |
38 | Kim B. S., Lee H. I., Min Y., Poon Z., Hammond P. T., Chem. Commun. (Camb.), 2009, (28), 4194—4196 |
39 | Chen J., Kozlovskaya V., Goins A., Campos⁃Gomez J., Saeed M., Kharlampieva E., Biomacromolecules, 2013, 14, 3830—3841 |
40 | Shutava T., Prouty M., Kommireddy D., Lvov Y., Macromolecules, 2005, 38, 2850—2858 |
41 | Dierendonck M., Fierens K., de Rycke R., Lybaert L., Maji S., Zhang Z., Zhang Q., Hoogenboom R., Lambrecht B. N., Grooten J., Remon J. P., de Koker S., de Geest B. G., Adv. Funct. Mater., 2014, 24, 4634—4644 |
42 | Jakobek L., Food Chem., 2015, 175, 556—567 |
43 | Shin M., Ryu J. H., Park J. P., Kim K., Yang J. W., Lee H., Adv. Funct. Mater., 2015, 25, 1270—1278 |
44 | Yu J., Wei W., Danner E., Israelachvili J. N., Waite J. H., Adv. Mater., 2011, 23, 2362—2366 |
45 | Fan Q., Yang Z., Li Y., Cheng Y., Li Y., Adv. Funct. Mater., 2021, 31, 2101646 |
46 | Quan T. H., Benjakul S., Sae⁃leaw T., Balange A. K., Maqsood S., Trends in Food Sci. & Tech., 2019, 91, 507—517 |
47 | Dai S., Xu T., Yuan Y., Fang Q., Lian Z., Tian T., Tong X., Jiang L., Wang H., Food Hydrocolloids, 2024, 146, 109197 |
48 | Charlton A. J., Baxter N. J., Khan M. L., Moir A. J., Haslam E., Davies A. P., Williamson M. P., J. Agric. Food Chem., 2002, 50, 1593—1601 |
49 | Chung J. E., Tan S., Gao S. J., Yongvongsoontorn N., Kim S. H., Lee J. H., Choi H. S., Yano H., Zhuo L., Kurisawa M., Ying J. Y., Nat. Nanotechnol., 2014, 9, 907—912 |
50 | Chen J., Pan S., Zhou J., Lin Z., Qu Y., Glab A., Han Y., Richardson J. J., Caruso F., Adv. Mater., 2022, 34, e2108624 |
51 | Zhang C., Hu D. F., Xu J. W., Ma M. Q., Xing H., Yao K., Ji J., Xu Z. K., ACS Nano, 2018, 12, 12347—12356 |
52 | Tian H., Wang G., Sang W., Xie L., Zhang Z., Li W., Yan J., Tian Y., Li J., Li B., Dai Y., Nano Today, 2022, 43, 101405 |
53 | Lv M., Chen M., Zhang R., Zhang W., Wang C., Zhang Y., Wei X., Guan Y., Liu J., Feng K., Jing M., Wang X., Liu Y. C., Mei Q., Han W., Jiang Z., Cell Res., 2020, 30, 966—979 |
54 | Mandal M. K., Domb A. J., Pharmaceutics, 2024, 16, 718 |
55 | Fang R., Hao R., Wu X., Li Q., Leng X., Jing H., J. Agric. Food Chem., 2011, 59, 6292—6298 |
56 | Ren P. F., Yang H. C., Liang H. Q., Xu X. L., Wan L. S., Xu Z. K., Langmuir, 2015, 31, 5851—5858 |
57 | Liu S., Ji W., Wu T., He Y., Huang Y., Yu Y., Yu W., ACS Sustainable Chem. Eng., 2024, 12, 4224—4235 |
58 | Gao Z., Zharov I., Chem. Mater., 2014, 26, 2030—2037 |
59 | Li W., Yan J., Tian H., Li B., Wang G., Sang W., Zhang Z., Zhang X., Dai Y., Bioact. Mater., 2023, 22, 34—46 |
60 | Martinez C. R., Iverson B. L., Chem. Sci., 2012, 3, 2191—2201 |
61 | Liu F. F., Fan J. L., Wang S. G., Ma G. H., Chem. Eng. J., 2013, 219, 450—458 |
62 | Lin D., Xing B., Environ. Sci. Technol., 2008, 42, 5917—5923 |
63 | Luo J., Lai J., Zhang N., Liu Y., Liu R., Liu X., ACS Sustainable Chem. Eng., 2016, 4, 1404—1413 |
64 | Liang K., Chung J. E., Gao S. J., Yongvongsoontorn N., Kurisawa M., Adv. Mater., 2018, 30, e1706963 |
65 | Philp D., Stoddart J. F., Angew. Chem. Int. Ed., 1996, 35(11), 1154—1196 |
66 | Shen C., Zhao L., Du X., Tian J., Yuan Y., Jia M., He Y., Zeng R., Qiao R., Li C., Mol. Pharm., 2021, 18, 1419—1430 |
67 | Liu Z., Yu W., Sheng W., Li R., Guo H., Feng X., Li Q., Wang R., Li W., Jia X., Biomacromolecules, 2022, 23, 140—149 |
68 | Xu C., Wang Y., Yu H., Tian H., Chen X., ACS Nano, 2018, 12, 8255—8265 |
69 | Wang G., Li B., Tian H., Xie L., Yan J., Sang W., Li J., Zhang Z., Li W., Dai Y., Adv. Funct. Mater., 2023, 33, 2213425 |
70 | Sang W., Xie L., Wang G., Li J., Zhang Z., Li B., Guo S., Deng C. X., Dai Y., Adv. Sci.(Weinh), 2021, 8, 2003338 |
71 | Li J., Zhang C., He W., Qiao H., Chen J., Wang K., Oupicky D., Sun M., Biomater. Sci., 2017, 6, 179—188 |
72 | Shi H., Wang R., Cao H. C., Guo H. Y., Pan P., Xiong C. F., Zhang L. J., Yang Q., Wei S., Liu T., Adv. Healthc. Mater., 2023, 12, e2300054 |
73 | Zhan L., Yin X., Zhang Y., Ju J., Wu Y., Ding L., Li C., Chen X., Wang Y., Biomater. Adv., 2023, 146, 213306 |
74 | Wang X., Yan J., Wang L., Pan D., Xu Y., Wang F., Sheng J., Li X., Yang M., Theranostics, 2020, 10, 10808—10822 |
75 | Shan L., Gao G., Wang W., Tang W., Wang Z., Yang Z., Fan W., Zhu G., Zhai K., Jacobson O., Dai Y., Chen X., Biomaterials, 2019, 210, 62—69 |
76 | Zhao Y., Xu L., Kong F., Yu L., Chem. Eng. J., 2021, 416, 129090 |
77 | Payra D., Yamauchi Y., Samitsu S., Naito M., Chem. Mater., 2018, 30, 8025—8033 |
78 | Nagesh P. K. B., Chowdhury P., Hatami E., Kumari S., Kashyap V. K., Tripathi M. K., Wagh S., Meibohm B., Chauhan S. C., Jaggi M., Yallapu M. M., ACS Appl. Mater. Interf., 2019, 11, 38537—38554 |
79 | Patel A. R., Seijen⁃ten⁃Hoorn J., Heussen P. C. M., Drost E., Hazekamp J., Velikov K. P., J. Colloid Interf. Sci., 2012, 374, 150—156 |
80 | Von Staszewski M., Jara F. L., Ruiz A. L. T. G., Jagus R. J., Carvalho J. E., Pilosof A. M. R., J. Funct. Foods, 2012, 4, 800—809 |
81 | Zheng X., Chen A., Hoshi T., Anzai J., Li G., Anal. Bioanal. Chem., 2006, 386, 1913—1919 |
82 | Kuzuhara T., Sei Y., Yamaguchi K., Suganuma M., Fujiki H., J. Biol. Chem., 2006, 281, 17446—17456 |
83 | Galindo⁃Murillo R., Cheatham III T. E., J. Biomol. Struct. Dyn., 2018, 36, 3311—3323 |
84 | Shen W., Wang Q., Shen Y., Gao X., Li L., Yan Y., Wang H., Cheng Y., ACS Cent. Sci., 2018, 4, 1326—1333 |
85 | Shen W., Wang R., Fan Q., Gao X., Wang H., Shen Y., Li Y., Cheng Y., CCS Chemistry, 2020, 2, 146—157 |
86 | Bae K. H., Chan K. H., Kurisawa M., ACS Macro. Lett., 2022, 11, 835—840 |
[1] | YUE Xin, JIA Tingfang, CHEN Yao, ZHOU Yuanzhu, QU Jiafei, LI Cong, SHEN Jing. Near-infrared Light Curing of Dental Resin Composite Doped with Rare Earth Upconversion Nanoparticles [J]. Chem. J. Chinese Universities, 2025, 46(1): 188. |
[2] | LI Binxi, ZHANG Yan, YAO Dong. Fe3O4/CuInS2 Binary Superparticles for Magnetic Resonance/Fluorescence Dual Mode Imaging [J]. Chem. J. Chinese Universities, 2025, 46(1): 234. |
[3] | SUN Yujie, NIU Zhentian, TONG Haoxuan, HU Yue, YU Bingran, XU Fujian. Ring-opening Preparation of Poly(disulfide)s for Drug Delivery [J]. Chem. J. Chinese Universities, 2025, 46(1): 20240116. |
[4] | ZHANG Dang, SUN Xiaomin, YANG Haiyue, SONG Bohan, CONG Meng, WANG Yuxin, DING Feng, XU Shanshan, BI Sai, WANG Lei. Application of Nanozyme-based Micro/nanomotors in Smart Drug Delivery [J]. Chem. J. Chinese Universities, 2025, 46(1): 76. |
[5] | SAREN Gerile, LIANG Jing, GUAN Shaoyu, CHANG Yujia, ZHANG Jiabo, LIANG Nan, KANG Jing, DONG Alideertu. Antibacterial Properties of N-halamine Modified Gold Nanoparticles [J]. Chem. J. Chinese Universities, 2025, 46(1): 252. |
[6] | NING Jiayu, HAO Pengfei, WANG Feng, YE Jiaquan, CHONG Yu. Functional Polyphenol-Arginine Self-assembled Nanodrug for Radiosensitization in Breast Cancer [J]. Chem. J. Chinese Universities, 2025, 46(1): 206. |
[7] | CHEN Junnian, ZHANG Haifeng, WANG Haibing, YANG Huocheng, LUO Zhong. Research Progress of Precision Antitumor Medicine Based on Supramolecular Drug-delivery Nanosystems [J]. Chem. J. Chinese Universities, 2025, 46(1): 50. |
[8] | YU Wenli, WANG Zixuan, DONG Bin, WU Zexing, CHAI Yongming, WANG Lei. pH-Universal Hydrogen Evolution Reaction Performance Boosted by Electronic Interaction Between Ultrafine Pt Nanoparticles and MOF Support [J]. Chem. J. Chinese Universities, 2024, 45(12): 20240408. |
[9] | YAN Yongjie, GAO Wenbo, LU Chenhui, YANG Cheng, XU Shuting. Detection of Coffee Polyphenols in Nanoliter Cerebrospinal Fluid by Microextraction Coupled to Nanoelectrospray Ionization Mass Spectrometry [J]. Chem. J. Chinese Universities, 2024, 45(11): 20240327. |
[10] | HU Wenxin, ZHAO Ying, DU Danyang, ZHANG Hongdan, CHENG Peng. Preparation of ZSM-5 Encapsulated Pt-La Bimetallic Catalysts and Their Catalytic Performance for iso-Butane Cracking [J]. Chem. J. Chinese Universities, 2024, 45(10): 20240244. |
[11] | SHENG Jinhan, ZHENG Qizhen, WANG Ming. Non-viral Delivery of CRISPR/Cas9 Genome Editing [J]. Chem. J. Chinese Universities, 2023, 44(3): 20220344. |
[12] | YANG Jiye, SUN Dayin, WANG Yan, GU Anqi, YE Yilan, DING Shujiang, YANG Zhenzhong. Progresses in Template Synthesis and Applications of Hollow Materials [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220665. |
[13] | WANG Hui, ZHAO Decai, YANG Nailiang, WANG Dan. Gate Keeper in the Smart Hollow Drug Carrier [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220237. |
[14] | LIU Shuwei, JIN Hao, YIN Wanzhong, ZHANG Hao. Gemcitabine/polypyrrole Composite Nanoparticles for Chemo-photothermal Combination Ovarian Cancer Therapy [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220345. |
[15] | WU Yushuai, SHANG Yingxu, JIANG Qiao, DING Baoquan. Research Progress of Controllable Self-assembled DNA Origami Structure as Drug Carrier [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||