Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (12): 3632.doi: 10.7503/cjcu20210318
• Analytical Chemistry • Previous Articles Next Articles
WANG Ruxin1, ZHAO Zhongjun2, HE Feiyao1, YUE Hanlu1, DENG Fulong1, LI Hong1, LI Wenwen3(), DUAN Yixiang1(
)
Received:
2021-05-08
Online:
2021-12-10
Published:
2021-08-11
Contact:
DUAN Yixiang
E-mail:wenwentp@163.com;yduan@scu.edu.cn
Supported by:
CLC Number:
TrendMD:
WANG Ruxin, ZHAO Zhongjun, HE Feiyao, YUE Hanlu, DENG Fulong, LI Hong, LI Wenwen, DUAN Yixiang. Characteristic Analysis of C1—C3n-Aldehydes and n-Alcohols in Proton Transfer Reaction Time-of-flight Mass Spectrometry[J]. Chem. J. Chinese Universities, 2021, 42(12): 3632.
Molecule | PA/(kJ·mol-1) NIST* | Reaction | 109 Rate coefficients, 109k/(cm3·s-1) |
---|---|---|---|
Methanol | 754.3 | CH3OH + H3O+ → CH3OH2+ + H2O | 2.3[ |
CH3OH + H3O+·H2O → CH3OH2+·H2O + H2O | 1.9[ | ||
CH3OH + H3O+ → H3O+·CH3OH | ― | ||
n(CH3OH) + CH3OH2+ → CH3OH2+·(CH3OH)n, n=1, 2 | ― | ||
CH3OH2+·(CH3OH)n → CH3+·(CH3OH)n + H2O, n=1, 2 | ― | ||
Ethanol | 776.4 | C2H5OH + H3O+ → C2H5OH2+ + H2O | 2.2[ |
C2H5OH + H3O+·H2O → C2H5OH2+·H2O + H2O(R1) | 2.3[ | ||
C2H5OH + H3O+ → H3O+·C2H5OH | ― | ||
C2H5OH2+ → C2H5+ + H2 | ― | ||
n(C2H5OH) + C2H5OH2+ → C2H5OH2+·(C2H5OH)n, n=1, 2 | ― | ||
C2H5OH2+·(C2H5OH)n → C2H5+·(C2H5OH)n + H2O, n=1, 2 | ― | ||
C2H5OH2+ + 2H2O → C2H5OH2+·(H2O)2 | ― | ||
Propanol | 779.7 | C3H7OH + H3O+ → C3H7OH2+ + H2O | 2.4[ |
C3H7OH + H3O+·H2O → C3H7OH2+·H2O + H2O | ― | ||
C3H7OH + H3O+ → H3O+·C3H7OH | ― | ||
n(C3H7OH) + C3H7OH2+ → C3H7OH2+·(C3H7OH)n, n=1, 2 | ― | ||
C3H7OH2+·(C3H7OH)n → C3H7+·(C3H7OH)n + H2O, n=1, 2 | ― | ||
C3H7OH2+ → C3H7+, C3H7O+ | ― | ||
Subsequent fragmentation of sequential loss of H2[ | |||
C3H7OH2+→[C3H7]+(m/z 43)→[C3H5]+(m/z 41)→[C3H3]+(m/z 39) | ― | ||
Formaldehyde | 712.9 | HCHO + H3O+ → HCHOH+ + H2O(R3) | 2.9[ |
HCHOH+ + H2O → HCHO + H3O+(R4) | 3×10-3―5×10-3[ | ||
H3O+·H2O + HCHO → H3O+·HCHO + H2O | 2.3[ | ||
HCHOH+ + CH2O → HCHOH+·CH2O | ― | ||
HCHOH+·CH2O, HCHOH+ → m/z 51, 65 | ― | ||
Acetaldehyde | 768.5 | CH3CHO + H3O+ → CH3CHOH+ + H2O(R5) | 3.3[ |
H3O+·H2O + CH3CHO → H3O+·CH3CHO + H2O(R6) | 3.2[ | ||
CH3CHOH+ → CH3CO+ + H2 | ― | ||
CH3CHO + CH3CHOH+ → CH3CHOH+·CH3CHO | ― | ||
Propanal | 786.0 | C2H5CHO + H3O+ → C2H5CHOH+ + H2O | 3.4[ |
H3O+·H2O + C2H5CHO → H3O+·C2H5CHO + H2O | 3.2[ | ||
C2H5CHOH+ + H2O → C2H5CHOH+·H2O | ― | ||
C2H5CHOH+ → C3H5+, C2H5+, m/z 46 | ― | ||
C2H5CHOH+ + C2H5+ → C2H5CHOH+·C2H5 | ― |
Molecule | PA/(kJ·mol-1) NIST* | Reaction | 109 Rate coefficients, 109k/(cm3·s-1) |
---|---|---|---|
Methanol | 754.3 | CH3OH + H3O+ → CH3OH2+ + H2O | 2.3[ |
CH3OH + H3O+·H2O → CH3OH2+·H2O + H2O | 1.9[ | ||
CH3OH + H3O+ → H3O+·CH3OH | ― | ||
n(CH3OH) + CH3OH2+ → CH3OH2+·(CH3OH)n, n=1, 2 | ― | ||
CH3OH2+·(CH3OH)n → CH3+·(CH3OH)n + H2O, n=1, 2 | ― | ||
Ethanol | 776.4 | C2H5OH + H3O+ → C2H5OH2+ + H2O | 2.2[ |
C2H5OH + H3O+·H2O → C2H5OH2+·H2O + H2O(R1) | 2.3[ | ||
C2H5OH + H3O+ → H3O+·C2H5OH | ― | ||
C2H5OH2+ → C2H5+ + H2 | ― | ||
n(C2H5OH) + C2H5OH2+ → C2H5OH2+·(C2H5OH)n, n=1, 2 | ― | ||
C2H5OH2+·(C2H5OH)n → C2H5+·(C2H5OH)n + H2O, n=1, 2 | ― | ||
C2H5OH2+ + 2H2O → C2H5OH2+·(H2O)2 | ― | ||
Propanol | 779.7 | C3H7OH + H3O+ → C3H7OH2+ + H2O | 2.4[ |
C3H7OH + H3O+·H2O → C3H7OH2+·H2O + H2O | ― | ||
C3H7OH + H3O+ → H3O+·C3H7OH | ― | ||
n(C3H7OH) + C3H7OH2+ → C3H7OH2+·(C3H7OH)n, n=1, 2 | ― | ||
C3H7OH2+·(C3H7OH)n → C3H7+·(C3H7OH)n + H2O, n=1, 2 | ― | ||
C3H7OH2+ → C3H7+, C3H7O+ | ― | ||
Subsequent fragmentation of sequential loss of H2[ | |||
C3H7OH2+→[C3H7]+(m/z 43)→[C3H5]+(m/z 41)→[C3H3]+(m/z 39) | ― | ||
Formaldehyde | 712.9 | HCHO + H3O+ → HCHOH+ + H2O(R3) | 2.9[ |
HCHOH+ + H2O → HCHO + H3O+(R4) | 3×10-3―5×10-3[ | ||
H3O+·H2O + HCHO → H3O+·HCHO + H2O | 2.3[ | ||
HCHOH+ + CH2O → HCHOH+·CH2O | ― | ||
HCHOH+·CH2O, HCHOH+ → m/z 51, 65 | ― | ||
Acetaldehyde | 768.5 | CH3CHO + H3O+ → CH3CHOH+ + H2O(R5) | 3.3[ |
H3O+·H2O + CH3CHO → H3O+·CH3CHO + H2O(R6) | 3.2[ | ||
CH3CHOH+ → CH3CO+ + H2 | ― | ||
CH3CHO + CH3CHOH+ → CH3CHOH+·CH3CHO | ― | ||
Propanal | 786.0 | C2H5CHO + H3O+ → C2H5CHOH+ + H2O | 3.4[ |
H3O+·H2O + C2H5CHO → H3O+·C2H5CHO + H2O | 3.2[ | ||
C2H5CHOH+ + H2O → C2H5CHOH+·H2O | ― | ||
C2H5CHOH+ → C3H5+, C2H5+, m/z 46 | ― | ||
C2H5CHOH+ + C2H5+ → C2H5CHOH+·C2H5 | ― |
1 | Costello B., Amann A., Al⁃Kateb H., Flynn C., Ratcliffe N. M., J. Breath Res., 2014, 8(1), 014001 |
2 | Hakim M., Broza Y. Y., Barash O., Peled N., Phillips M., Amann A., Haick H., Chem. Rev., 2012, 112(11), 5949―5966 |
3 | Zanin R. C., Viegas M. C., Smrke S., Yeretzian C., Yamashita F., Eur. Food Res. Technol., 2021, 247, 865―878 |
4 | Ceccarelli A., Farneti B., Khomenko I., Cellini A., Donati I., Aprea E., Biasioli F., Spinelli F., Postharvest Biol. Technol., 2020, 159, 111020―111033 |
5 | Berbegal C., Khomenko I., Russo P., Spano G., Fragasso M., Biasioli F., Capozzi V., Fermentation, 2020, 6(2), 55―71 |
6 | Koppmann R., Volatile Organic Compounds in the Atmosphere, Blackwell Publishing Ltd., Oxford, 2007, 82―114 |
7 | GB/T39727⁃2020, Emission Standard of Air Pollutants for Pesticide Industry, Standards Press of China, Beijing, 2020(中国国家标准化管理委员会, GB/T 39727⁃2020, 农药制造工业大气污染物排放标准, 北京: 中国标准出版社, 2020) |
8 | Zong S., China Environment Supervision, 2017, 9, 13―14(综述. 中国环境监察, 2017, 9, 13―14) |
9 | Liu Y. D., Hu J., Tang T. Y., ZhangY., Ouyang Y. P., Ouyang A. G., Spectroscopy and Spectral Analysis, 2019, 39(2), 459―464(刘燕德, 胡军, 唐天义, 张宇, 欧阳玉平, 欧阳爱国. 光谱学与光谱分析, 2019, 39(2), 459―464) |
10 | Lü H. Y., Li G. Y., Fan W., Liu Y. H., Shan Y., Food Science, 2013, 34(24), 107―109(吕慧英, 李高阳, 范伟, 刘咏红, 单杨. 食品科学, 2013, 34(24), 107―109) |
11 | Xu R., Zhang L. X., Li M. W., Yin Y. Y., Yin J., Zhu M. Y., Chen J. J., Wang Y., Bie L. J., Sensors and Actuators B: Chemical, 2019, 289, 186―194 |
12 | Yang M., He J., RSC Adv.,2018, 8(1), 22―27 |
13 | Chen X., Muhammad K. G., Madeeha C., Fu W., Xu L., Hu Y. J., Liu J., Ying K. J., Chen L. Y., Yurievna G. O., Lung Cancer, 2021, 154, 197―205 |
14 | Thriumani R., Zakaria A., Jeffree A. I., Hasyim Y. Z. H., Helmy K. M., Omar M. I., Shakaff A. Y., Kamarudin L. M., Procedia Chemistry, 2016, 20, 1―7 |
15 | da Lima T. C., Santos R. S., Silva S. Y. S., de Santos D. A., da Silva S. C., de Gomes A. A., Oliveira M. C. F., Alves K. F., Pinto L., Oliveira M. N., Food Chemistry, 2021, 362, 130150 |
16 | Ge C., Fei J. J., Xie Y. X., Journal of Xiangtan University(Natucience Edition), 2018, 40(3), 12―15(葛城, 费俊杰, 谢轶羲. 湘潭大学自然科学学报, 2018, 40(3), 12―15) |
17 | Cao H. R., Study on Determination of Prohibited Substances in Cosmetics by Ultra Performance Liquid Chromatography⁃Tandem Mass Spectrometry, Shanghai Institute of Technology, Shang Hai, 2019(曹海荣. 超高效液相色谱⁃质谱法测定化妆品中禁用组分的方法研究, 上海: 上海应用技术大学, 2019) |
18 | Chen Y., Li P., Liao L., Qin Y., Jiang L., Liu Y., Food Chemistry, 2021, 361, 130055 |
19 | Chen J., Tao L., Zhang T., Zhang J., Wu T., Luan D., Ni L., Wang X., Zhong J., LWT, 2021, 147, 111585 |
20 | Leng P., Hu H., Cui A., Tang H., Liu Y., LWT, 2021, 149, 111963 |
21 | Vitola P. L., Simon V., Richard R., Pic J., Violleau F., Manero M., Chemosphere, 2019, 235, 1107―1115 |
22 | Turner C., Volatile Biomarkers, Elsevier, Boston, 2013, 343―357 |
23 | Španěl P., Smith D., Clinical Mass Spectrometry, 2020, 16, 18―24 |
24 | Lindinger W., Hansel A., Jordan A., Chem. Soc. Rev., 1998, 27(5), 347―354 |
25 | Trowbridge A. M., Stoy P. C., Phillips R. P. J., Geophys. Res.: Biogeosci., 2020, 125(4), 1―14 |
26 | Majchrzak T., Wojnowski W., Wasik A., Trends Plant Sci.,2020, 25(3), 313―314 |
27 | Berbegal C., Khomenko I., Russo P., Spano G., Fragasso M., Biasioli F., Capozzi V., Fermentation, 2020, 6(2), 55―72 |
28 | Munoz⁃gonzalez C., Feron G., Canon F., Food Chemistry, 2021, 342, 128355 |
29 | Malaskova M., Olivenza⁃leon D., Chellayah P. D., Martini J., Lederer W., Ruzsanyi V., Unterkofler K., Mochalski P., Marek T. D., Watts P., Mayhew C. A. J., Breath Res., 2020, 14(2), 1―32 |
30 | Shi L. L., Fang X., Yang D. S., Guo S., Zheng J., Ma Y., Ma X., Acta Scientiae Circumstantiae, 2020, 40(11), 4133―4144(史林林, 房鑫, 杨栋森, 郭松, 郑军, 马嫣, 马鑫. 环境科学学报, 2020, 40(11), 4133―4144) |
31 | Zhan X. F., Duan Y. X., Chinese J. Anal. Chem., 2011, 39(10), 1611―1618(詹雪芳, 段忆翔. 分析化学, 2011, 39(10), 1611―1618) |
32 | Kammer J., Truong F., Boissard C., Soulie A. L., Dupont A. L., Simon L., Gros V., Lavedrine B., Journal of Cultural Heritage, 2021, 47, 50―58 |
33 | Shen C. Y., Li J. Q., Xu G. H., Wang H. M., Han H. Y., Zheng P. C., Li H., Wang Y. J., Chu Y. N., Chem. J. Chinese Universities, 2009, 30(2), 274―278(沈成银, 李建权, 徐国华, 王鸿梅, 韩海燕, 郑培超, 李虎, 王玉杰, 储焰南. 高等学校化学学报, 2009, 30(2), 274―278) |
34 | Zhao Z. J., He F. Y., Guo X., Li W. W., Dai J. X., Fu Y., Li H., Deng F. L., Pu J., Yang Y. T., Wang X., Duan Y. X., Journal of Chineses Mass Spectrometry Society, 2021, 285―293(赵忠俊, 贺飞耀, 郭星, 李雯雯, 代渐雄, 付玉, 李宏, 邓辅龙, 蒲娟, 杨燕婷, 王旭, 段忆翔. 质谱学报, 2021, 285―293) |
35 | Zhao Z., Dai J., Wang T., Niu G., He F., Duan Y., Talanta, 2020, 208, 120468 |
36 | Bouchoux G., Salpin J. Y., Leblanc D., Int. J. Mass Spectrom. Ion Processes, 1996, 153(1), 37―48 |
37 | Smith D., Mcewan M. J., Spanel P., Anal. Chem., 2020, 92(19), 12750―12762 |
38 | Schwarz K., Filipiak W., Amann A., J. Breath Res., 2009, 3(2), 027002 |
39 | Tani A., Hayward S., Hewitta C. N., Int. J. Mass Spectrom., 2003, 223(1―3), 561―578 |
40 | Lindinger W., Hansel A., Plasma Sources Sci. Technol., 1997, 6(2), 111―117 |
41 | Aprea E, Biasioli F, Maerk T D., Gasperi F., Int. J. Mass Spectrom., 2007, 262(1/2), 114―121 |
42 | Jobson B. T., Alexander M. L., Maupin G. D., Muntean G. G., Int. J. Mass Spectrom., 2005, 245(1―3), 78―89 |
43 | Maleknia S. D., Bell T. L., Adams M. A., Int. J. Mass Spectrom., 2007, 262(3), 203―210 |
44 | Kurtz S. M., Devine J. N., Biomaterials, 2007, 28(32), 4845―4869 |
45 | Brown P., Watts P., Mark T. D., Mayhew C. A., Int. J. Mass Spectrom., 2010, 294(2/3), 103―111 |
46 | Hansel A., Singer W., Wisthaler A., Schwarzmann M., Lindinger W., Int. J. Mass Spectrom. Ion Processes, 1997, 167/168, 697―703 |
47 | Zhao J., Zhang R., Atmospheric Environment, 2004, 38(14), 2177―2185 |
48 | Inomata S., Tanimoto H., Kameyama S., Tsunogai U., Irie H., Kanaya Y., Wang Z., Atmos Chem. Phys. Discuss., 2007, 7(2), 273―284 |
49 | Demarcke M., Amelynck C., Schoon N., Dhooghe F., Rimetz⁃Planchon J., van Langenhove H., Dewulf J., Int. J. Mass Spectrom., 2010, 290(1), 14―21 |
50 | Jobson B. T., Mccoskey J. K., J. Atmos. Chem., Discussions Physics, 2010, 10(4), 1821―1835 |
51 | Vlasenko A., Macdonald A. M., Sjostedt S. J., Abbatt J., Atmos. Meas. Tech., 2010, 3(2), 1055―1062 |
[1] | HE Yu, XIA Qian, WANG Wenli, LUO Fang, CHEN Jinfeng, GUO Yating, WANG Jian, LIN Zhenyu, CHEN Guonan. Triglycerides as Potential Biomarkers for Pesticides Pollution in Aquatic Environment Using UPLC-QTOF-MS [J]. Chem. J. Chinese Universities, 2020, 41(3): 431. |
[2] | ZHAO Lefeng, JIAO Chuanxin, LI Hui, JIAO Lili, MA Yue, WU Wei, LIU Shuying. Chemical Transformation of Protopanaxadiol Type Ginsenoside Rb1, Rb2 and Rc Analyzed by RRLC-Q-TOF-MS† [J]. Chem. J. Chinese Universities, 2018, 39(4): 667. |
[3] | HUANG Yu, GU Caiyun, WU Hanzhong, XIA Xiaoshuang, LI Xin. UPLC-QTOF-MS-based Metabolomics Study on Ischemic Stroke Patients† [J]. Chem. J. Chinese Universities, 2017, 38(10): 1742. |
[4] | CHENG Yu, LIU Yu-Min, HUANG Feng-Jie, CHEN Tian-Lu, ZHENG Xiao-Jiao, ZHAO Ai-Hua, HE Pin-Gang, JIA Wei. Robust and High Throughput UPLC-QTOFMS Method for the Global Metabolic Profiling Study of Human Serum [J]. Chem. J. Chinese Universities, 2013, 34(1): 77. |
[5] | YANG Zheng, LIU Hong-Tao, TANG Zi-Chao, GAO Zhen*. Ionization and Dissociation of Methyl Bromide in Intense Laser Field [J]. Chem. J. Chinese Universities, 2010, 31(2): 367. |
[6] | HUANG Rong-Fu, ZOU Dong-Xuan, ZHANG Bo-Chao, GONG Zhen-Bin*, HANG Wei*, HE Jian, HUANG Ben-Li. Elemental Imaging of Mineral Surface by Laser Ionization Time-of-Flight Mass Spectrometry [J]. Chem. J. Chinese Universities, 2010, 31(11): 2113. |
[7] | HE Jian1*, HUANG Rong-Fu2, YU Quan2, HANG Wei1,2*, HUANG Ben-Li2. Standardless Semi-quantitative Elemental Analysis of Steel Using Laser Ablation Time-of-flight Mass Spectrometry [J]. Chem. J. Chinese Universities, 2009, 30(1): 57. |
[8] | LU Xian-Feng1,2, LIU Zhi-Qiang1, Xing Jun-Peng1, LIU Shu-Ying1*. Investigation of Diblock Copolymers of Poly(ethylene glycol) Methyl Ether-block-Poly(ε-caprolactone) Using MALDI-TOF Mass Spectrometry Technique [J]. Chem. J. Chinese Universities, 2008, 29(6): 1267. |
[9] | YANG Mei, ZHANG Jian-Da, WANG Peng, LIU Xiao-Hang, YUAN Zhi, LIU Hong-Fu, YANG Hong-Tao, YANG Shu-Fen, ZHAO Jing-Li . Separation and Identification of the Uremic Middle Molecules [J]. Chem. J. Chinese Universities, 2005, 26(4): 677. |
[10] | WU Jian-Fang, LU Xin, TANG Wan-Ying, LIAN Xiao-Hong, KONG Hong-Wei, RUAN Chun-Hai, XU Guo-Wang . Application of Comprehensive Two-dimensional Gas Chromatography/ Time-of-flight Mass Spectrometry to Analysis of Zedoary Volatile Oil [J]. Chem. J. Chinese Universities, 2004, 25(8): 1432. |
[11] | ZHOU Li-Hua, DENG Hui-Min, DENG Qin-Ying, ZHAO Shan-Kai . Analysis of Oligonucleotide and Protein via Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry Using 2-Amino-5-nitrothiazole as an Effective Matrix [J]. Chem. J. Chinese Universities, 2004, 25(12): 2242. |
[12] | HU Yi-Hua, CHEN Li, WU Huai-Xuan, WANG Xiao-Juan, LIU Mei-Xi, YANG Shi-He . Resonant Two-photon Ionization Spectra of van der Waals Complexes C6H4(CH32:Ar, N2, NH3(ND3) [J]. Chem. J. Chinese Universities, 2003, 24(12): 2275. |
[13] | ZHANG Zhuo-Yong, Aaron Urbas, Peter de B Harrington, Kent J. Voorhees, Jon Rees. Temperature-constrained Cascade Correlation Network andIts Application to Bacteria Identification [J]. Chem. J. Chinese Universities, 2002, 23(4): 570. |
[14] | CHU Jie-Gen, YUAN Zhi, WU Qiang, HE Bing-Lin . Separation and Analyses of Uremic Middle Molecules by Chromatography and Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry [J]. Chem. J. Chinese Universities, 2001, 22(7): 1166. |
[15] | FANG Shi-Ping, HAO Chun-Yan, LIU Zhi-Qiang, LIU Shu-Ying. Behavior of Silver Cluster on Laser Desorption/Ionization Time-of-flight Mass Spectrometry [J]. Chem. J. Chinese Universities, 1998, 19(2): 201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||