 
	 
	Chem. J. Chinese Universities ›› 2018, Vol. 39 ›› Issue (3): 514.doi: 10.7503/cjcu20170496
• Physical Chemistry • Previous Articles Next Articles
					
													LI Ren1, ZHAO Jianwei1,2,*( ), HOU Jin1,*(
), HOU Jin1,*( ), HE Yuanyuan2, CHENG Na2
), HE Yuanyuan2, CHENG Na2
												  
						
						
						
					
				
Received:2017-07-21
															
							
															
							
															
							
																											Online:2018-03-10
																								
							
																	Published:2018-01-15
															
						Contact:
								ZHAO Jianwei,HOU Jin   
																	E-mail:jwzhao@mail.zjxu.edu.cn;jhou@swjtu.edu.cn
																					Supported by:CLC Number:
TrendMD:
LI Ren, ZHAO Jianwei, HOU Jin, HE Yuanyuan, CHENG Na. Effect of the Convex and the Concave Microstructures in the Metallic Nanowires on the Initial Deformation Behavior†[J]. Chem. J. Chinese Universities, 2018, 39(3): 514.
 
																													Fig.3 Stress distribution along the z-direction(A) SC-WW; (B) SC+2; (C) SC+3; (D) SC-2; (E) SC-3. Strain: a. 0; b. 0.01; c. 0.02; d. 0.04; e. 0.05; f. 0.06.
| [1] | Deng C., Sansoz F., ACS Nano, 2009, 3(10), 3001—3008 | 
| [2] | Zhang L. D., Science, 1993, 45, 13—17 | 
| [3] | Ball P., Garwin L., Nature, 1992, 355, 761—766 | 
| [4] | Cui Z., Micro-nanofabrication Technologies and Applications, Higher Education Press, Beijing, 2009 | 
| ( 崔铮. 微纳米加工技术及其应用, 北京: 高等教育出版社, 2009) | |
| [5] | Sun W., Zhang J. J., Zhao J. W., Acta Phys. Chim. Sin., 2013, 29(9), 1931—1936 | 
| [6] | Rapaport D. C., Phys. Rev. E, 2002, 66(1), 011906 | 
| [7] | Park H. S., Gall K., Zimmerman J. A., J. Mech. Phys. Solids, 2006, 54(9), 1862—1881 | 
| [8] | Liang W., Zhou M., P. I. Mech. Eng. C: J Mec., 2004, 218(6), 599—606 | 
| [9] | Zhu T., Li J., Samanta A., Leach A., Gall K., Phys. Rev. Lett., 2008, 100(2), 025502 | 
| [10] | Raabkin E., Srolovitz D. J., Nano Lett., 2007, 7(1), 101—107 | 
| [11] | Sun L., Krasheninnikov A. V., Ahlgren T., Nordlund K., Banhart F., Phys. Rev. Lett., 2008, 101(15), 156101 | 
| [12] | Cao A. J., Wei Y. G., Mao S. X., Appl. Phys. Lett., 2007, 90(15), 151909—151913 | 
| [13] | Agrait N., Rubio G., Vieira S., Phys. Rev. Lett., 1995, 74(20), 3995—3998 | 
| [14] | Rodrigues V., Ugarte D., Phys. Rev. B, 2001, 63(7), 073405 | 
| [15] | Melosh N. A., Boukai A., Diana F., Gerardot B., Badolato A., Petroff P. M., Health J. R., Science, 2003, 300(5616), 112—115 | 
| [16] | Wan Q., Li Q. H., Chen Y. J., Wang T. H., He X. L., Li J. P., Lin C. L., Appl. Phys. Lett., 2004, 84(18), 3654—3656 | 
| [17] | Halperin W. P., Rev. Mod. Phys., 1986, 58(3), 532—606 | 
| [18] | Liu Y. H., Zhao J. W., Comp. Mater. Sci., 2011, 50(4), 1418—1424 | 
| [19] | McDowell M. T., Leach A. M., Gall K., Nano Lett., 2008, 8(11), 3613—3618 | 
| [20] | Yang X., Sun Y., Wang F., Zhao J. W., Comp. Mater. Sci., 2015, 106(1), 23—28 | 
| [21] | Hemker K. J., Science, 2004, 304, 221—223 | 
| [22] | Spearot D. E., Tschopp M. A., Jacob K. I., McDowell D. L., Acta Mater., 2007, 55(2), 705—714 | 
| [23] | Sun Y. L., Gao Y. J., Sun W., Zhao J. W., Mol. Simulat., 2014, 41(15), 1—9 | 
| [24] | Xu D. H., Hu Q., Peng R. W., Zhou Y., Wang M., Acta Phys. Sin., 2015, 64(9), 097803 | 
| [25] | Wei H., Li Z. P., Tian X. R., Wang Z. X., Cong F. Z., Liu N., Zhang S. P., Nordlander P., Halas N. J., Nano Lett., 2010, 11, 471—475 | 
| [26] | Wei H., Wang Z. X., Tian X. R., Kall M., Xu H. X., Nat. Commun., 2011, 2, 387—392 | 
| [27] | Yu H. K., Fang W., Wu X. Q., Lin X., Tong L. M., Liu W. T., Wang A. M., Shen Y. R., Nano Lett., 2014, 14, 3487—3490 | 
| [28] | Daw M. S., Baskes M. I., Phys. Rev. Lett., 1983, 50, 1285—1288 | 
| [29] | Johnson R. A., Phys. Rev. B, 1988, 37, 3924—3931 | 
| [30] | Johnson R. A., Phys. Rev. B, 1988, 37, 6121—6125 | 
| [31] | Johnson R. A., Phys. Rev. B, 1989, 39, 12554—12559 | 
| [32] | Foiles S. M., Baskes M. I., Daw M. S., Phys. Rev. B: Condens. Matter, 1986, 33(12), 7983 | 
| [33] | Rapaport D.C., The Art of Molecular Dynamics Simulation, Cambridge University Press, New York, 2002 | 
| [34] | Chen Z.L., Theory and Practice of Molecular Simulation, Chemical Industry Press, Beijing, 2007 | 
| ( 陈正隆. 分子模拟的理论与实践, 北京: 化学工业出版社, 2007) | |
| [35] | Morales J. J., Rull L. F., Toxvaerd S., Comput. Phys. Commun., 1989, 56(2), 129—134 | 
| [36] | Gunsteren W. F. V., Berendsen H. J., J. Mol. Biol., 1984, 176, 559—564 | 
| [37] | Quentrec B., Brot C., Phys. Rev. A, 1975, 12, 272—281 | 
| [38] | Verlet B. L., Health Phys., 1967, 22, 79—85 | 
| [39] | Verlet B. L., Phys. Rev., 1967, 165, 201—214 | 
| [40] | Tsuzuki H., Branicio P. S., Rino J. P., Comput. Phys. Commun., 2007, 177(6), 518—523 | 
| [41] | Kelchner C. L., Plimpton S. J., Hamilton J. C., Phys. Rev. B, 1998, 58, 11085—11088 | 
| [42] | Zhao J. W., Yin X., Liang S., Chem. Res. Chinese Universities, 2008, 24(1), 1—4 | 
| [43] | Jiang L. Y., Yin X., Zhao J. W., Chinese J. Inorg. Chem., 2009, 25, 176—179 | 
| [44] | Jiang L. Y., Sun W., Gao Y. J., Zhao J. W., Phys. Chem. Chem. Phys., 2014, 16(14), 6623—6629 | 
| [45] | Zhao J. W., Murakoshi K., Yin X., Kiguchi M., Guo Y., J. Phys. Chem. C, 2015, 112, 20088—20094 | 
| [46] | Gao Y. J., Wang F. Y., Zhu T. M., Comp. Mater. Sci., 2010, 49(4), 826—830 | 
| [47] | Liu Y. H., Zhao J. W., Wang F. Y., Phys. Rev. B, 2009, 80(11), 115417 | 
| [48] | Wu H. A., Eur. J. Mech. A: Solids, 2006, 25(2), 370—377 | 
| [49] | Vlassov S., Polyakov B., Dorogin L. M., Antsov M., Mets M., Umalas M., Saar R., Lohmus R., Kink I., Mater. Chem. Phys., 2014, 143(3), 1026—1031 | 
| [50] | Lucas M., Leach A. M., McDowell M. T., Hunyadi S. M., Gall K., Murphy C. J., Riedo E., Phys. Rev. B, 2008, 77(24), 245420 | 
| [51] | Zhu Y., Qin Q. Q., Xu F., Fan F. R., Ding Y., Zhang T., Wiley B. J., Wang Z. L., Phys. Rev. B, 2012, 85, 045443 | 
| [52] | Sheng H. P., Zheng H., Cao F., Wu S. J., Li L., Liu C., Zhao D. S., Wang J. B., Nano Res., 2015, 11, 3687—3693 | 
| [53] | Park N. Y., Nam H. S., Cha P. R., Lee S. C., Nano Res., 2015, 8(3), 941—947 | 
| [54] | Wang F. Y., Gao Y. J., Zhu T. M., Zhao J. W., Nanoscale Res. Lett., 2011, 6, 291—302 | 
| [55] | Wang F. Y., Gao Y. J., Zhu T. M., Zhao J. W., Nanoscale, 2011, 3, 1624—1631 | 
| [56] | Wang F. Y., Liu Y. H., Yin X., Wang D., Gao Y. J., Zhao J. W., J. Appl. Phys., 2010, 108, 074311 | 
| [57] | Kondo Y., Takayanagi K., Science, 2001 , 32(43), 606—608 | 
| [58] | Oshima Y., Kondo Y., Takayanagi K., J. Electron Microsc., 2003, 52(1), 49—55 | 
| [59] | Chang C. P., Lin J. G., Jeng H. T., Cheng S. L., Pong W. F., Phys. Rev. B: Condens. Matter, 2013, 87(7), 218—224 | 
| [60] | Sun Y. L., Gao Y. J., Sun Q., Zhao J. W., Acta Physico-Chimica Sin., 2015, 31(10), 1880—1887 | 
| (孙寅路, 高亚军, 孙倩, 赵健伟.物理化学学报,2015, 31(10), 1880—1887) | |
| [61] | Stukowski A., Adle K., Modell. Simul. Mater. Sci. Eng., 2010, 18(2), 025016 | 
| [1] | GAO Zhiwei, LI Junwei, SHI Sai, FU Qiang, JIA Junru, AN Hailong. Analysis of Gating Characteristics of TRPM8 Channel Based on Molecular Dynamics [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220080. | 
| [2] | ZENG Xianyang, ZHAO Xi, HUANG Xuri. Mechanism of Inhibition of Glucose and Proton Cotransport Protein GlcPSe by Cytochalasin B [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210822. | 
| [3] | CHEN Hanxiang, BIAN Shaoju, HU Bin, LI Wu. Molecular Simulation of the Osmotic Pressures for LiCl-NaCl-KCl-H2O Solution System [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210727. | 
| [4] | HU Bo, ZHU Haochen. Dielectric Constant of Confined Water in a Bilayer Graphene Oxide Nanosystem [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210614. | 
| [5] | ZHANG Mi, TIAN Yafeng, GAO Keli, HOU Hua, WANG Baoshan. Molecular Dynamics Simulation of the Physicochemical Properties of Trifluoromethanesulfonyl Fluoride Dielectrics [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220424. | 
| [6] | ZHANG Lingyu, ZHANG Jilong, QU Zexing. Dynamics Study of Intramolecular Vibrational Energy Redistribution in RDX Molecule [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220393. | 
| [7] | LI Congcong, LIU Minghao, HAN Jiarui, ZHU Jingxuan, HAN Weiwei, LI Wannan. Theoretical Study of the Catalytic Activity of VmoLac Non-specific Substrates Based on Molecular Dynamics Simulations [J]. Chem. J. Chinese Universities, 2021, 42(8): 2518. | 
| [8] | LEI Xiaotong, JIN Yiqing, MENG Xuanyu. Prediction of the Binding Site of PIP2 in the TREK-1 Channel Based on Molecular Modeling [J]. Chem. J. Chinese Universities, 2021, 42(8): 2550. | 
| [9] | LIU Shasha, ZHANG Heng, YUAN Shiling, LIU Chengbu. Molecular Dynamics Simulation of Pulsed Electric Field O/W Emulsion Demulsification [J]. Chem. J. Chinese Universities, 2021, 42(7): 2170. | 
| [10] | LIU Dongsheng. Supramolecular Interactions Induced Chiral Assembly of Plasmonic Nanoparticles with Enhanced Optical Asymmetry [J]. Chem. J. Chinese Universities, 2021, 42(6): 1619. | 
| [11] | SUN Hao, GONG Jie, YANG Yan, WANG Xinqing, CHEN Huidong. Synthesis of Three-dimensional Ordered In2O3 Nanowire Arrays and the Effect of Nanostructure Order on Gas Sensitivity [J]. Chem. J. Chinese Universities, 2021, 42(6): 1730. | 
| [12] | WU Qiliang, MEI Jinghao, LI Zheng, FAN Haidong, ZHANG Yanwei. Photo-thermal Coupling Water Splitting over Fe-doped TiO2 with Various Nanostructures [J]. Chem. J. Chinese Universities, 2021, 42(6): 1837. | 
| [13] | ZENG Yonghui, YAN Tianying. Vibrational Density of States Analysis of Proton Hydration Structure [J]. Chem. J. Chinese Universities, 2021, 42(6): 1855. | 
| [14] | GAO Juan, SUN Quanhu, HUANG Changshui. Graphdiyne-based Nanostructured Materials and Their Applications in Energy Storage and Conversion [J]. Chem. J. Chinese Universities, 2021, 42(5): 1501. | 
| [15] | DOU Shuzhen, WANG Zhongshun, LYU Nan. Improving the Detection Performance of Surface-assisted Laser Desorption/ionization Mass Spectrometry by Silicon Nanostructures [J]. Chem. J. Chinese Universities, 2021, 42(4): 1156. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||