Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (9): 20250077.doi: 10.7503/cjcu20250077
• Physical Chemistry • Previous Articles Next Articles
					
													GAO Wenxiu(
), LIU Bai, KANG Jianing, YUAN Shiqi, GAO Yongping, ZHAO Cuicui, ZHANG Zhihui
												  
						
						
						
					
				
Received:2025-03-18
															
							
															
							
															
							
																											Online:2025-09-10
																								
							
																	Published:2025-06-18
															
						Contact:
								GAO Wenxiu   
																	E-mail:gaowenxiu-0922@jlict.edu.cn
																					Supported by:CLC Number:
TrendMD:
GAO Wenxiu, LIU Bai, KANG Jianing, YUAN Shiqi, GAO Yongping, ZHAO Cuicui, ZHANG Zhihui. Nitrogen-doped Carbon Materials Derived from Soybean Stalk Catalyzing Reduction of Nitrobenzene to Aniline[J]. Chem. J. Chinese Universities, 2025, 46(9): 20250077.
| Sample | BET surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore size/nm | 
|---|---|---|---|
| SSC⁃600 | 590 | 0.32 | 2.20 | 
| SSC⁃700 | 696 | 0.38 | 2.18 | 
| SSC⁃800 | 1018 | 0.59 | 2.23 | 
Table 1 Physical properties of SSC-X
| Sample | BET surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore size/nm | 
|---|---|---|---|
| SSC⁃600 | 590 | 0.32 | 2.20 | 
| SSC⁃700 | 696 | 0.38 | 2.18 | 
| SSC⁃800 | 1018 | 0.59 | 2.23 | 
| Sample | N(%) | Nitrogen species(%) | |||
|---|---|---|---|---|---|
| Pyridinic | Pyrrolic | Graphitic | Oxidized | ||
| SSC⁃600 | 1.04 | 23 | 34 | 36 | 7 | 
| SSC⁃700 | 0.86 | 22 | 30 | 41 | 8 | 
| SSC⁃800 | 0.85 | 20 | 26 | 47 | 7 | 
Table 2 Nitrogen content(%, atomic fraction) in SSC-X
| Sample | N(%) | Nitrogen species(%) | |||
|---|---|---|---|---|---|
| Pyridinic | Pyrrolic | Graphitic | Oxidized | ||
| SSC⁃600 | 1.04 | 23 | 34 | 36 | 7 | 
| SSC⁃700 | 0.86 | 22 | 30 | 41 | 8 | 
| SSC⁃800 | 0.85 | 20 | 26 | 47 | 7 | 
| Entry | Catalyst | Pre⁃carbonization temperature/℃  | Hydrothermal temperature/℃  | KOH Mass/g | Carbonization temperature/℃  | Conversion(%) | 10-3 TOF/ (mol·g-1·h-1)  | 
|---|---|---|---|---|---|---|---|
| 1 | SSP⁃350 | 350 | 150 | 5 | 800 | 100 | 8 | 
| 2 | SSP⁃400 | 400 | 150 | 5 | 800 | 84 | 7 | 
| 3 | SSP⁃450 | 450 | 150 | 5 | 800 | 77 | 6 | 
| 4 | SSH⁃120 | 350 | 120 | 5 | 800 | 88 | 7 | 
| 5 | SSH⁃150 | 350 | 150 | 5 | 800 | 100 | 8 | 
| 6 | SSH⁃180 | 350 | 180 | 5 | 800 | 89 | 7 | 
| 7 | SSK⁃1∶1 | 350 | 150 | 1 | 800 | 20 | 2 | 
| 8 | SSK⁃1∶3 | 350 | 150 | 3 | 800 | 83 | 7 | 
| 9 | SSK⁃1∶5 | 350 | 150 | 5 | 800 | 100 | 8 | 
| 10 | SSC⁃600 | 350 | 150 | 5 | 600 | 85 | 7 | 
| 11 | SSC⁃700 | 350 | 150 | 5 | 700 | 94 | 8 | 
| 12 | SSC⁃800 | 350 | 150 | 5 | 800 | 100 | 8 | 
Table 3 Effectiveness of different catalysts for catalytic application in nitrobenzene hydrogenation reaction*
| Entry | Catalyst | Pre⁃carbonization temperature/℃  | Hydrothermal temperature/℃  | KOH Mass/g | Carbonization temperature/℃  | Conversion(%) | 10-3 TOF/ (mol·g-1·h-1)  | 
|---|---|---|---|---|---|---|---|
| 1 | SSP⁃350 | 350 | 150 | 5 | 800 | 100 | 8 | 
| 2 | SSP⁃400 | 400 | 150 | 5 | 800 | 84 | 7 | 
| 3 | SSP⁃450 | 450 | 150 | 5 | 800 | 77 | 6 | 
| 4 | SSH⁃120 | 350 | 120 | 5 | 800 | 88 | 7 | 
| 5 | SSH⁃150 | 350 | 150 | 5 | 800 | 100 | 8 | 
| 6 | SSH⁃180 | 350 | 180 | 5 | 800 | 89 | 7 | 
| 7 | SSK⁃1∶1 | 350 | 150 | 1 | 800 | 20 | 2 | 
| 8 | SSK⁃1∶3 | 350 | 150 | 3 | 800 | 83 | 7 | 
| 9 | SSK⁃1∶5 | 350 | 150 | 5 | 800 | 100 | 8 | 
| 10 | SSC⁃600 | 350 | 150 | 5 | 600 | 85 | 7 | 
| 11 | SSC⁃700 | 350 | 150 | 5 | 700 | 94 | 8 | 
| 12 | SSC⁃800 | 350 | 150 | 5 | 800 | 100 | 8 | 
| Entry | Catalyst | Temperature/℃ | Solvent | Conversion(%) | 10-3 TOF/(mol·g-1·h-1) | 
|---|---|---|---|---|---|
| 1 | Blank | 80 | Cyclohexane | 0 | — | 
| 2 | SSC‑800(15 mg) | 80 | Acetonitrile | 26 | 12 | 
| 3 | SSC‑800(15 mg) | 80 | Ethanol | 38 | 17 | 
| 4 | SSC‑800(15 mg) | 80 | Cyclohexane | 100 | 44 | 
| 5 | SSC‑800(15 mg) | 70 | Cyclohexane | 69 | 31 | 
| 6 | SSC‑800(15 mg) | 60 | Cyclohexane | 49 | 22 | 
| 7 | SSC‑800(5 mg) | 80 | Cyclohexane | 28 | 37 | 
| 8 | SSC‑800(10 mg) | 80 | Cyclohexane | 89 | 59 | 
Table 4 Optimization of reaction condition for SSC-X catalysed hydrogenation of nitrobenzene*
| Entry | Catalyst | Temperature/℃ | Solvent | Conversion(%) | 10-3 TOF/(mol·g-1·h-1) | 
|---|---|---|---|---|---|
| 1 | Blank | 80 | Cyclohexane | 0 | — | 
| 2 | SSC‑800(15 mg) | 80 | Acetonitrile | 26 | 12 | 
| 3 | SSC‑800(15 mg) | 80 | Ethanol | 38 | 17 | 
| 4 | SSC‑800(15 mg) | 80 | Cyclohexane | 100 | 44 | 
| 5 | SSC‑800(15 mg) | 70 | Cyclohexane | 69 | 31 | 
| 6 | SSC‑800(15 mg) | 60 | Cyclohexane | 49 | 22 | 
| 7 | SSC‑800(5 mg) | 80 | Cyclohexane | 28 | 37 | 
| 8 | SSC‑800(10 mg) | 80 | Cyclohexane | 89 | 59 | 
| Entry | Catalyst | Solvent | Temperature/℃ | Time/h | Conversion(%) | Selectivity(%) | Recycle times | 10-3 TOF/(mol·g-1·h-1) | Reference | 
|---|---|---|---|---|---|---|---|---|---|
| 1 | SSC⁃800 | Cyclohexane | 80 | 0.75 | 100 | >99 | 8 | 44.4 | This work | 
| 2 | RNC⁃600 | Ethanol | 80 | 5 | 100 | >99.9 | 5 | 10.0 | [ | 
| 3 | P⁃CNT900 | Hexane | 100 | 15 | 100 | 99 | 8 | 1.6 | [ | 
| 4 | NACs⁃3800 | Ethanol/Water | 100 | 3.5 | 99.9 | >99.9 | 8 | 4.6 | [ | 
| 5 | Co@NCG⁃800 | Isopropanol | 100 | 2.5 | 100 | 99 | 6 | 9.8 | [ | 
| 6 | OZG⁃800 | Ethanol | 170 | 26 | 99.7 | 94.4 | 7 | 0.3 | [ | 
Table 5 Comparison of SSC-X and other similar catalysts
| Entry | Catalyst | Solvent | Temperature/℃ | Time/h | Conversion(%) | Selectivity(%) | Recycle times | 10-3 TOF/(mol·g-1·h-1) | Reference | 
|---|---|---|---|---|---|---|---|---|---|
| 1 | SSC⁃800 | Cyclohexane | 80 | 0.75 | 100 | >99 | 8 | 44.4 | This work | 
| 2 | RNC⁃600 | Ethanol | 80 | 5 | 100 | >99.9 | 5 | 10.0 | [ | 
| 3 | P⁃CNT900 | Hexane | 100 | 15 | 100 | 99 | 8 | 1.6 | [ | 
| 4 | NACs⁃3800 | Ethanol/Water | 100 | 3.5 | 99.9 | >99.9 | 8 | 4.6 | [ | 
| 5 | Co@NCG⁃800 | Isopropanol | 100 | 2.5 | 100 | 99 | 6 | 9.8 | [ | 
| 6 | OZG⁃800 | Ethanol | 170 | 26 | 99.7 | 94.4 | 7 | 0.3 | [ | 
| [1] | Wu X., Luo N., Xie S., Zhang H., Zhang Q., Wang F., Wang Y., Chem. Soc. Rev., 2020, 49(17), 6198—6223 | 
| [2] | Gao R., Zhang Y., Han C., Gui H., Yao C., Ni C., Li X., Green Chem., 2023, 25(21), 8706—8717 | 
| [3] | Sun S., Liu Z., Xu Z. J., Wu T., Applied Catalysis B: Environ. Energy, 2024, 358, 124404 | 
| [4] | Zhu S., Ke J., Li X., Zheng Z., Guo R., Chen J., Green Chem., 2024, 26(11), 6361—6381 | 
| [5] | Belluati M., Tabasso S., Calcio Gaudino E., Cravotto G., Manzoli M., Green Chem., 2024, 26(15), 8642—8668 | 
| [6] | González⁃Arias J., Zhang Z., Reina T. R., Odriozola J. A., Environ. Chem. Lett., 2023, 21(6), 3089—3104 | 
| [7] | Xu J. N., Bai W. J., Lou Y. H., Yu H. P., Dou S., Chem. J. Chinese Universities, 2023, 44(5), 20220749 | 
| 徐佳宁, 白文静, 楼雨寒, 于海鹏, 窦烁. 高等学校化学学报, 2023, 44(5), 20220749 | |
| [8] | Li S. Q., Song H., Hu J. H., Yang H. P., Zou J., Zhu Y. J., Tang Z. Y., Chen H. P., Fuel, 2021, 297, 120780 | 
| [9] | Zhang L., Zhao X., Zhang T., Li C., Jiao S., Liu J., Li P., Tao Y., Chen H., Ind. Crops Prod., 2021, 174, 114180 | 
| [10] | Duan R., Ma S. L., Xu S. J., Wang B. B., He M. F., Li G. X., Fu H. C., Zhao P., Water Res., 2022, 218, 118489 | 
| [11] | Meng X. R., Gao S., Liu N. X., Wu P. D., Fang Z., Chem. Eng. J., 2024, 500, 157463 | 
| [12] | Tian Y., Wang F., Djandja J. O., Zhang S. L., Xu Y. P., Duan P. G., Fuel, 2020, 265, 116946 | 
| [13] | Zhu Q. L., Dai L. C., Wu B., Tan F. R., Wang W. G., Tang X. Y., Wang Y. W., He M. X., Hu G. Q., Bioresources, 2017, 12(2), 2284—2295 | 
| [14] | Tahir M. H., Irfan R. M., Hussain M. B., Alhumade H., Al⁃Turki Y., Cheng X. X., Karim A., Ibrahim M., Rathore H. A., ACS Omega, 2021, 6(49), 33694—33700 | 
| [15] | Chen J. F., Wang P. Y., Ding L. S., Yu T., Leng S. Q., Chen J., Fan L. L., Li J. J., Wei L., Li J., Lu Q., Leng L. J., Zhou W. U., J. Anal. Appl. Pyrol., 2021, 156, 105070 | 
| [16] | Xu S., Chen J., Peng H., Leng S., Li H., Qu W., Hu Y., Li H., Jiang S., Zhou W., Leng L., Fuel, 2021, 291, 120128 | 
| [17] | Zhang X., Wu J., Yang H., Shao J., Wang X., Chen Y., Zhang S., Chen H., RSC Adv., 2016, 6(100), 98157—98166 | 
| [18] | Gonzalez P. G. A., de Jesus Gariboti J. C., Leal Silva J. F., Lopes E. S., Abaide E. R., Lopes M. S., Concha V. O. C., Felisbino R. F., Gomes E. L., Tovar L. P., Bioenerg. Res., 2022, 16(2), 717—740 | 
| [19] | Liu Y., Su M., Li D., Li S., Li X., Zhao J., Liu F., RSC Adv., 2020, 10(12), 6763—6771 | 
| [20] | Hou N., Li X., Jiang X., Zhang N., Wang R., Li D., Sci. Total Environ., 2022, 844, 157145 | 
| [21] | Zhang Y., Jiang Q., Jiang S., Li H., Zhang R., Qu J., Zhang S., Han W., Chem. Eng. J., 2021, 420, 129868 | 
| [22] | Gao Y. P., Liu B., Kang J. N., Lyu J. Q., Yu Z. G., Zhang Z. H., Gao W. X., Chem. J. Chinese Universities, 2024, 45(5), 20240040 | 
| 高永平, 刘柏, 康家宁, 吕杰琼, 于泽广, 张志会, 高文秀, 高等学校化学学报, 2024, 45(5), 20240040 | |
| [23] | Gao W., Gao Y., Liu B., Kang J., Zhang Z., Zhang M., Zou Y., RSC Adv., 2024, 14(8), 5055—5060 | 
| [24] | Qu Y., An H., Zhao X., Wang Y., Chem. Eng. J., 2024, 496, 153949 | 
| [25] | Qi H., Wang X., Lei M., Fan W., Huang S., Zhu L., Tang H., Chem. Eng. J., 2024, 500, 157057 | 
| [26] | Liu N., Ding L., Li H., Jia M., Zhang W., An N., Yuan X., J. Colloid Interface Sci., 2017, 490(2017), 677—684 | 
| [27] | Yang H., Yan R., Chen H., Lee D. H., Zheng C., Fuel, 2007, 86(12/13), 1781—1788 | 
| [28] | Xu Y. X., Chen X. C., Wu D., Luo Y. J., Liu X. P., Qian Q. R., Xiao L. R., Chen Q. H., Carbon Lett., 2018, 25(1), 68—77 | 
| [29] | Liu X., Zhang M., Yu D., Li T., Wan M., Zhu H., Du M., Yao J., Electrochim. Acta, 2016, 215, 223—230 | 
| [30] | Zhang Z. H., Yuan Z. L., Liu B., Jin S. W., A C⁃N Material Catalyst and a Method for Preparing Amine Compounds by Catalyzing the Reduction of Nitro Compounds Using It, CN 108160098B, 2021⁃03⁃02 | 
| 张泽会, 袁紫亮, 刘冰, 金士威. 一种C—N材料催化剂及利用其催化硝基化合物的还原制备胺类化合物的方法, CN 108160098B, 2021⁃03⁃02 | |
| [31] | Liao C., Liu B., Chi Q., Zhang Z., ACS Appl. Mater. & Interfaces, 2018, 10(51), 44421—44429 | 
| [32] | Hu X., Long Y., Fan M., Yuan M., Zhao H., Ma J., Dong Z., Appl. Catal. B: Environ. Energy, 2019, 244(1), 25—35 | 
| [33] | Ma Z., Chen J., Chen M., Dong L., Mao W., Long Y., Ma J., Mol. Catal., 2023, 547, 113372 | 
| [34] | Lu X., Wang D., Ge L., Xiao L., Zhang H., Liu L., zhang J., An M., Yang P., New J. Chem., 2018, 42(24), 19665—19670 | 
| [35] | Lv J., Zheng Y., Zhu Y., Yuan M., Chang Y., Dong Z., ChemistrySelect, 2019, 4(14), 4083—4091 | 
| [36] | Chen X., Shen Q., Li Z., Wan W., Chen J., Zhang J., ACS Applied Materials & Interfaces, 2019, 12(1), 654—666 | 
| [37] | Wang H., Li X., Cui Z., Yang L., Sun S., Reaction Kinetics, Mechanisms and Catalysis, 2020, 130(1), 331—346 | 
| [38] | Yang Y., Bu Y., Long X. l., Zhou Z. k., Wang J., Cai J. j., New Carbon Materials, 2023, 38(3), 555—563 | 
| [39] | Han D., Liu Y., Lv Y., Xiong W., Hao F., Luo H., Liu P., Carbon, 2023, 203(1), 347—356 | 
| [1] | LAI Lina, BAO Yunxin, WANG Yiming, FAN Jie. Analysis of High Value Methane Conversion Pathways in the Context of Carbon Neutrality [J]. Chem. J. Chinese Universities, 2025, 46(9): 20250122. | 
| [2] | QIN Caiyi, LI Juan, LI Ying, ZHANG Jiuwen, LONG Hanyi, LI Xinyu, MI Nan, LIU Jinwei, LI Hua. In⁃situ Construction of Co-MOFs/Carbon Fiber Composite Cathodes and their Efficient Degradation of Tetracycline in the Electro-Fenton System [J]. Chem. J. Chinese Universities, 2025, 46(8): 20250118. | 
| [3] | HUI Chenyang, XU Chenhui, YANG Yang, LIU Jialun, LI Yatai, GUO Zhenguo, YANG Zhenzhen, ZHANG Genlei. Preparation of 2,5-Furandicarboxylic Acid by Electrocatalytic Oxidation of 5-Hydroxymethylfurfural with P-NiCoMo-LDH [J]. Chem. J. Chinese Universities, 2025, 46(8): 20250126. | 
| [4] | ZHANG Xiaohui, ZHAO Dongdong, ZHANG Junjie, ZHUANG Jinliang. D-A Type Covalent Organic Framework Nanorods for Visible Light Catalyzed Benzylamine Coupling Reaction [J]. Chem. J. Chinese Universities, 2025, 46(7): 20250020. | 
| [5] | LI Chengyu, SHANG Lu, ZHANG Tierui. Defect-modified Commercial Carbon Nanotubes for Poison-resistant Electrochemical Carbon Dioxide Reduction [J]. Chem. J. Chinese Universities, 2025, 46(5): 20250043. | 
| [6] | LIU Zhaozhen, YAO Yanfang, FANG Kun, LYU Yunrui, YE Yong, LIU Haiyang. Metalloporphyrin/Multi-walled Carbon Nanotubes Composites for Electrocatalytic Hydrogen Evolution Reaction [J]. Chem. J. Chinese Universities, 2025, 46(5): 20240529. | 
| [7] | LU Jingyu, LIU Zhiping, SHENG Xia, FENG Xinjian. Surface Wettability Regulation of Titanium Dioxide for Enhanced Photocatalytic Oxidation Reaction Performance [J]. Chem. J. Chinese Universities, 2025, 46(5): 20240571. | 
| [8] | KANG Sha, ZHANG Ke, WEI Yajing, WANG Chuanyi. In⁃situ Construction of N-defective g-C3N5/CdS/Ti3C2 Schottky Junction for High-efficiency Photocatalytic NO Removal [J]. Chem. J. Chinese Universities, 2025, 46(4): 20240488. | 
| [9] | ZHANG Wang, LU Xinhuan, DONG Yanhong, GUO Haotian, YAN Shan, ZHOU Dan, XIA Qinghua. Synergistic Catalysis Air Epoxidation of Di-olefins by Spindle-shaped Cobalt-containing MOFs Materials [J]. Chem. J. Chinese Universities, 2025, 46(4): 20240555. | 
| [10] | ZHANG Xiaofei, TIAN Pengcheng, CHANG Jingjing. [3+2] Cyclization Addition of N-cyclopropyl Aniline in a Non-metallic Photocatalytic System [J]. Chem. J. Chinese Universities, 2024, 45(9): 20240253. | 
| [11] | ZHAO Ziwang, CONG Shurui, WANG Chunyu, ZHOU Shuyuan, PENG Meng, WANG Lei, XU Jiayu. Study of Ozone Elimination via Chlorine Radical Chain Reaction Under Visible Light [J]. Chem. J. Chinese Universities, 2024, 45(9): 20240187. | 
| [12] | JING Huifang, LIU Yi, FANG Qiang, LANG Xuelei, HAO Genyan, ZHONG Dazhong, LI Jinping, ZHAO Qiang. Preparation of Defect Sites Rich CuAg Catalyst for CO2 Reduction to C2+ Products [J]. Chem. J. Chinese Universities, 2024, 45(7): 20240082. | 
| [13] | JIANG Chunhuan, WANG Junqi, LIU Xiaoyu, YANG Ye, REN Chuanli, LI Zhibo. Ring-opening Alternating Copolymerization of Epoxides with Dihydrocoumarin Catalyzed by Phosphazenium/Et3B Binary Catalytic System [J]. Chem. J. Chinese Universities, 2024, 45(7): 20240159. | 
| [14] | MA Ransong, BI Jili, HU Yulai. Photoinduced Trifluoromethyl/arylation Reaction of Carbon Carbon Double Bond Involving CF3Br for the Synthesis of CF3-substituted 1,1-Diaryl Alkane Derivatives [J]. Chem. J. Chinese Universities, 2024, 45(5): 20240048. | 
| [15] | GAO Yongping, LIU Bai, KANG Jianing, LYU Jieqiong, YU Zeguang, ZHANG Zhihui, GAO Wenxiu. Nitrogen-doped Carbon Material MG-T Heterogeneous Catalyzed Hydrogenation of Nitrobenzene to Aniline [J]. Chem. J. Chinese Universities, 2024, 45(5): 20240040. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||