Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (9): 20240259.doi: 10.7503/cjcu20240259
• Physical Chemistry • Previous Articles
GOU Lei(), YANG Zheqi, YU Jinhua, FAN Xiaoyong, LI Donglin, LI Hui
Received:
2024-05-28
Online:
2024-09-10
Published:
2024-07-15
Contact:
GOU Lei
E-mail:leigou@chd.edu.cn
Supported by:
CLC Number:
TrendMD:
GOU Lei, YANG Zheqi, YU Jinhua, FAN Xiaoyong, LI Donglin, LI Hui. Electrochemical-mechanical Simulation of Ternary Cathode Materials with Core-shell Structure for Lithium-ion Batteries[J]. Chem. J. Chinese Universities, 2024, 45(9): 20240259.
Particle radius, rp | rc+as | Modulus of Al2O3, EAl2O3[ | 140 GPa |
---|---|---|---|
Transfer coefficient, αaαc[ | 0.5 | Modulus of binder, Ebin[ | 5 GPa |
Maximum Li+ concentration of NCM811, C | 37825 mol/m3 | Poisson's ratio of NCM, υNCM[ | 0.25 |
Diffusion coefficient of NCM811, DNCM[ | 4×10-14 m2/s | Poisson's ratio of Al2O3, υAl2O3[ | 0.2 |
Diffusion coefficient of Al2O3, DAl2O3[ | 1.1×10-14 m2/s | Poisson's ratio of binder, υbin[ | 0.3 |
Modulus of NCM, ENCM[ | 194.4 GPa |
Table 1 Summary of parameters used in the model
Particle radius, rp | rc+as | Modulus of Al2O3, EAl2O3[ | 140 GPa |
---|---|---|---|
Transfer coefficient, αaαc[ | 0.5 | Modulus of binder, Ebin[ | 5 GPa |
Maximum Li+ concentration of NCM811, C | 37825 mol/m3 | Poisson's ratio of NCM, υNCM[ | 0.25 |
Diffusion coefficient of NCM811, DNCM[ | 4×10-14 m2/s | Poisson's ratio of Al2O3, υAl2O3[ | 0.2 |
Diffusion coefficient of Al2O3, DAl2O3[ | 1.1×10-14 m2/s | Poisson's ratio of binder, υbin[ | 0.3 |
Modulus of NCM, ENCM[ | 194.4 GPa |
Discharging rate, C | 0.1C, 0.5C, 1.0C | Core radius, rc | 8 μm, 9 μm, 10 μm |
---|---|---|---|
Shell thickness, as | 10 nm, 20 nm, 50 nm |
Table 2 Parameters used for parametric studies
Discharging rate, C | 0.1C, 0.5C, 1.0C | Core radius, rc | 8 μm, 9 μm, 10 μm |
---|---|---|---|
Shell thickness, as | 10 nm, 20 nm, 50 nm |
1 | Xu J. J., Cai X. Y., Cai S. M., Shao Y. X., Hu C., Lu S. R., Ding S. J., Energy Environ. Mater., 2023, 6(5), e12450 |
2 | Gao Y. L., Pan Z. H., Sun J. G., Liu Z. L., Wang J., Nano⁃Micro Lett., 2022, 14(1), 94 |
3 | Duan J., Tang X., Dai H. F., Yang Y., Wu W. Y., Wei X. Z., Huang Y. H., Electrochem. Energy Rev., 2020, 3(1), 1—42 |
4 | Zhao S. Q., Guo Z. Q., Yan K., Wan S. W., He F. R., Sun B., Wang G. X., Energy Storage Mater., 2021, 34, 716—734 |
5 | Su Y. F., Zhang Q. Y., Chen L., Bao L. Y., Lu Y., Chen S., Wu F., J. Energy Chem., 2022, 65, 236—253 |
6 | Kebede M. A., Curr. Opin. Electrochem., 2023, 39, 101261 |
7 | Yin S. Y., Deng W. T., Chen J., Gao X., Zou G. Q., Hou H. S., Ji X. B., Nano Energy, 2021, 83, 105854 |
8 | Britala L., Marinaro M., Kucinskis G., J. Energy Storage, 2023, 73, 108875 |
9 | Nisar U., Muralidharan N., Essehli R., Amin R., Belharouak I., Energy Storage Mater., 2021, 38, 309—328 |
10 | Arora P., White R. E., Doyle M., J. Electrochem. Soc., 1998, 145(10), 3647—3667 |
11 | Lu B., Yuan Y. A., Bao Y. H., Zhao Y. F., Song Y. C., Zhang J. Q., Phys. Chem. Chem. Phys., 2022, 24(48), 29279—29297 |
12 | Guo Z. S., Ji L., Chen L., J. Mater. Sci., 2017, 52(23), 13606—13625 |
13 | Gao X., Lu W. Q., Xu J., J. Power Sources, 2020, 449, 227501 |
14 | Hao F., Fang D. N., J. Electrochem. Soc., 2013, 160(4), A595—A600 |
15 | Hu B., Ma Z., Lei W., Zou Y., Lu C., Theor. Appl. Mech. Lett., 2017, 7(4), 199—206 |
16 | Yang S. Y., Li C. W., Qi Z. F., Xin L. P., Li L. A., Wang S. B., Wang Z. Y., Chin. Phys. B, 2021, 30(9), 098201 |
17 | Sun F. N., Feng L., Bu J. H., Zhang J., Li L. A., Wang S. B., Acta Phys. Sin., 2019, 68(12), 42—51 |
孙凤楠, 冯露, 卜家贺, 张静, 李林安, 王世斌. 物理学报, 2019, 68(12), 42—51 | |
18 | de Biasi L., Kondrakov A. O., Gesswein H., Brezesinski T., Hartmann P., Janek J., J. Phys. Chem. C, 2017, 121(47), 26163—26171 |
19 | Li Q. F., Wang Y. N., Li H., Lian C., Wang Z. K., Int. J. Energy Res., 2021, 45(3), 3913—3928 |
20 | Lars Ole Valøen, Reimers J. N., J. Electrochem. Soc., 2005, 152(5), A882—A891 |
21 | Iqbal N., Choi J., Lee C., Ayub H. M. U., Kim J., Kim M., Kim Y., Moon D., Lee S., Mathematics, 2022, 10(24), 4697 |
22 | Jung S. C., Han Y. K., J. Phys. Chem. Lett., 2013, 4(16), 2681—2685 |
23 | Davis S., Gutiérrez G., J. Phys.: Condens. Matter, 2011, 23(49), 495401 |
24 | Vinogradov A., Holloway F., Ferroelectrics, 1999, 226(1—4), 169—181 |
25 | Ansah S., Hyun H., Shin N., Lee J. S., Lim J., Cho H. H., Comput. Mater. Sci., 2021, 196, 110559 |
26 | Kimura N., Seki E., Tooyama T., Nishimura S., J. Alloys Compd., 2021, 869, 159259 |
27 | Hu D., Du F. H., Cao H. S., Zhou Q., Sun P. P., Xu T., Mei C. X., Hao Q., Fan Z. X., Zheng J. W., J. Electroanal. Chem., 2021, 880, 114910 |
28 | Christensen J., Newman J., J. Solid State Electrochem., 2006, 10(5), 293—319 |
29 | Liu Y., Hudak N. S., Huber D. L., Limmer S. J., Sullivan J. P., Huang J. Y., Nano Lett., 2011, 11(10), 4188—4194 |
30 | Ma S., Zhang X. D., Wu S. M., Fan E. R., Lin J., Chen R. J., Wu F., Li L., Energy Storage Mater., 2023, 55, 556—565 |
[1] | LIU Kang, PAN Rongrong, JIANG Dechen. Electrochemical Analysis of Intracellular Molecules at Single Cells Based on Nanoelectrodes [J]. Chem. J. Chinese Universities, 2024, 45(5): 20240027. |
[2] | ZHANG Shuo, ZHAO Liuyang, HUANG Hao, WU Aimin, LI Aikui. Oxygen Framework Mechanism of Layered Lithium-rich Manganese-based Materials Stabilized by High-valent Element Mo Based on First-principles Calculations [J]. Chem. J. Chinese Universities, 2024, 45(5): 20240035. |
[3] | MA Qinzheng, WANG Wei, LIANG Xuting. Graphene⁃gold Nanomaterial Modified Electrode for the Detection of L-Tyrosine [J]. Chem. J. Chinese Universities, 2024, 45(4): 20230521. |
[4] | ZHANG Jinkai, LI Jiali, LIU Xiaoming, MU Ying. Application of Covalent Organic Frameworks in High-performance Lithium-ion Battery Anode Materials [J]. Chem. J. Chinese Universities, 2024, 45(3): 20230523. |
[5] | QIN Haijing, HE Qianjun, XU Minmin, YUAN Yaxian, YAO Jianlin. Electrochemical-SERS Investigation on the Decarboxylated Reaction of PMBA in Ionic Liquid and Influence of Interfacial Water [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230349. |
[6] | WANG Jiarui, LI Chunli, CHENG Jiahao, HAO Yaling, ZHOU Nan, YANG Peng. Functional Regulation and Mechanism of Phosphoric Acid in GO Intercalation Stage [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230410. |
[7] | HE Ruhan, LI Hao, HAN Fang, CHEN Aoyuan, MAI Liqiang, ZHOU Liang. Research Progresses on Interface Engineering of Si-Based Anodes for Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220748. |
[8] | WANG Siyang, JING Wen, CHANG Jiangwei, LU Siyu. Recent Progress on Carbon Dots Preparation and Electrochemical Energy Application [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220733. |
[9] | CHEN Shan, CHEN Jinhu, XU Guohailin, LIU Jun, Qian Mingyan, CHEN Jingwen, FANG Yimin. Electrochemical Sensor for Ammonium Nitrogen in Soil Based on Platinum Modified Screen-printed Electrodes [J]. Chem. J. Chinese Universities, 2023, 44(12): 20230390. |
[10] | ZHOU Hui, ZHU Shuaibo, WANG Jitong, QIAO Wenming, YU Zijian, ZHANG Yinxu. Construction and Electrochemical Properties of Si/rGO@CN as Anode Materials for High-performance Lithium-ion Batteries [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230354. |
[11] | BI Ruyi, ZHAO Jilu, WANG Jiangyan, YU Ranbo, WANG Dan. Synthesis and Lithium-ion Battery Performance of Hollow Multishelled CoFe2O4 [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220453. |
[12] | JIA Yanggang, SHAO Xia, CHENG Jie, WANG Pengpeng, MAO Aiqin. Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Perovskite High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220157. |
[13] | LI Yidi, TIAN Xiaochun, LI Junpeng, CHEN Lixiang, ZHAO Feng. Electron Transfer on the Semiconductor-microbe Interface and Its Environmental Application [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220089. |
[14] | FAN Xiaohui, WANG Yang, YANG Yuanyuan, ZHANG Yuhong. Preparation and Properties of Gold Nanocages/Hyaluronic Acid Core-shell Nanocarriers with pH/Enzyme/ Photothermal Multiple Responses [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210855. |
[15] | GUO Biao, ZHAO Chencan, LIU Xinxin, YU Zhou, ZHOU Lijing, YUAN Hongming, ZHAO Zhen. Effects of Surface Hydrothermal Carbon Layer on the Photocatalytic Activity of Magnetic NiFe2O4 Octahedron [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220472. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||