Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (11): 20240073.doi: 10.7503/cjcu20240073
• Review • Previous Articles Next Articles
ZUO Chunqian, XU Ruirui, BI Hongyan()
Received:
2024-02-10
Online:
2024-11-10
Published:
2024-04-17
Contact:
BI Hongyan
E-mail:hybi@shou.edu.cn
Supported by:
CLC Number:
TrendMD:
ZUO Chunqian, XU Ruirui, BI Hongyan. Research Progress of Allergen Detection in Aquatic Products[J]. Chem. J. Chinese Universities, 2024, 45(11): 20240073.
Commonly consumed aquatic product | Major allergen | Commonly consumed aquatic product | Major allergen |
---|---|---|---|
Fish | Parvalbumin(PV) | Crab | Tropomyosin(TM) |
Collagen⁃I | Arginine kinase(AK) | ||
Enolase | Sarcoplasmic calcium⁃binding protein(SCP) | ||
Aldolase | Triose phosphate isomerase | ||
Aldehyde phosphate dehydrogenase(APDH) | Filament protein C | ||
Shrimp | Tropomyosin(TM) | Scallops | Tropomyosin(TM) |
Arginine kinase(AK) | Oysters | Tropomyosin(TM) | |
Myosin light chain(MLC) | Arginine kinase(AK) | ||
Sarcoplasmic calcium⁃binding protein(SCP) | Sarcoplasmic calcium⁃binding | ||
Pyruvate kinase | protein(SCP) | ||
Hemocyanin | Conch | Tropomyosin(TM) | |
Paramyosin(PM) |
Table 1 Common allergens found in some common aquatic products
Commonly consumed aquatic product | Major allergen | Commonly consumed aquatic product | Major allergen |
---|---|---|---|
Fish | Parvalbumin(PV) | Crab | Tropomyosin(TM) |
Collagen⁃I | Arginine kinase(AK) | ||
Enolase | Sarcoplasmic calcium⁃binding protein(SCP) | ||
Aldolase | Triose phosphate isomerase | ||
Aldehyde phosphate dehydrogenase(APDH) | Filament protein C | ||
Shrimp | Tropomyosin(TM) | Scallops | Tropomyosin(TM) |
Arginine kinase(AK) | Oysters | Tropomyosin(TM) | |
Myosin light chain(MLC) | Arginine kinase(AK) | ||
Sarcoplasmic calcium⁃binding protein(SCP) | Sarcoplasmic calcium⁃binding | ||
Pyruvate kinase | protein(SCP) | ||
Hemocyanin | Conch | Tropomyosin(TM) | |
Paramyosin(PM) |
Technique | Advantage | Disadvantage | LOD |
---|---|---|---|
DNA⁃based methods | High accuracy and sensitivity, possibility to achieve on⁃site detection, multiplicity | Sensitivity and specificity depend significantly on DNA fragments of target allergenic foods, indirect detection | Shrimp allergen tropomyosin 3.2 pg(DNA)[ Crustaceans 1 pg(DNA) or 10 mg/kg[ |
ELISA | High sensibility, commercialization, validation test | Matrix interference, ensitive to some processing condition, relatively low efficiency | Raw mollusk 0.1—0.5[ Thermal processing mollusk 0.1 mg/kg[ Fish allergen 0.5 ng/mL[ |
Immunological methods | High specificity, high sensitivity, simple operation, low cost | Interference by antigen⁃antibody binding reactions, difficulty in antibody preparation, cross⁃reactivity | Fish parvalbumin 2 ng/mL[ Ovalbumin 0.05 μg/mL[ Protomyosin 0.5 μg/mL[ sarcoplasmic calcium⁃binding protein 0.05 μg/mL[ |
Biosensor | Quick response, high⁃throughput, portability, avoidance of cross⁃contamination | Slow response, extrinsic biological interfe-rence, high cost | Tropomyosin 1.8 μg/mL[ Protomyosin 77 ng/mL[ |
Mass Spectroscopy | Multiplex detection, high accuracy and reproducibility, no cross⁃reactivity problems | Requirements for specialized personnel | — |
Multi technology integration | High sensitivity, high efficiency | High cost, high technical requirements for operation | — |
Table 2 Comparison of allergen detection methods in various aquatic products
Technique | Advantage | Disadvantage | LOD |
---|---|---|---|
DNA⁃based methods | High accuracy and sensitivity, possibility to achieve on⁃site detection, multiplicity | Sensitivity and specificity depend significantly on DNA fragments of target allergenic foods, indirect detection | Shrimp allergen tropomyosin 3.2 pg(DNA)[ Crustaceans 1 pg(DNA) or 10 mg/kg[ |
ELISA | High sensibility, commercialization, validation test | Matrix interference, ensitive to some processing condition, relatively low efficiency | Raw mollusk 0.1—0.5[ Thermal processing mollusk 0.1 mg/kg[ Fish allergen 0.5 ng/mL[ |
Immunological methods | High specificity, high sensitivity, simple operation, low cost | Interference by antigen⁃antibody binding reactions, difficulty in antibody preparation, cross⁃reactivity | Fish parvalbumin 2 ng/mL[ Ovalbumin 0.05 μg/mL[ Protomyosin 0.5 μg/mL[ sarcoplasmic calcium⁃binding protein 0.05 μg/mL[ |
Biosensor | Quick response, high⁃throughput, portability, avoidance of cross⁃contamination | Slow response, extrinsic biological interfe-rence, high cost | Tropomyosin 1.8 μg/mL[ Protomyosin 77 ng/mL[ |
Mass Spectroscopy | Multiplex detection, high accuracy and reproducibility, no cross⁃reactivity problems | Requirements for specialized personnel | — |
Multi technology integration | High sensitivity, high efficiency | High cost, high technical requirements for operation | — |
1 | Ni J., Friedman H., Boyd B. C., McGurn A., Babinski P., Markossian T., Dugas L. R., BMC Pediatr., 2019, 19 (1), 1—8 |
2 | Paramesh H., Indian J. Pediatr., 2018, 85(4), 284—294 |
3 | Monaci L., De Angelis E., Montemurro N., Pilolli R., TrAC Trend. Anal. Chem., 2018, 106, 21—36 |
4 | Yu W., Freeland D. M. H., Nadeau K. C., Nat. Rev. Immunol., 2016, 16(12), 751—765 |
5 | Sampson A. H., O'Mahony L., Burks W. A., Plaut M., Lack G., Akdis C. A., J. Aller. Clin. Immun., 2018, 141(1), 11—19 |
6 | Crespo J. F., Beatriz C., Food Chem., 2023, 411, 135500—135500 |
7 | Zhang M., Wu P., Wu J., Ping J., Wu J., TrAC Trend. Anal. Chem., 2019, 114, 278—292 |
8 | Davis C. M., Gupta R. S., Aktas O. N., Diaz V., Kamath S. D., Lopata A. L., J. Aller. Cl. Imm⁃Pract., 2020, 8(1), 37—44 |
9 | Xu J., Ye Y., Ji J., Sun J., Sun X., Crit. Rev. Food Sci., 2022, 62(25), 6887—6907 |
10 | Eischeid A. C., J. Sci. Food Agr., 2019, 99(5), 2641—2645 |
11 | Dubiela P., Kabasser S., Smargiasso N., Geiselhart S., Bublin M., Hafner C., Mazzucchelli G., Sci. Rep., 2018, 8(1), 11366 |
12 | Nugraha R., Kamath S. D., Johnston E., Karnaneedi S., Ruethers T., Lopata A. L., Front. Immunol., 2019, 10, 2676 |
13 | Johnston E. B., Kamath S. D., Iyer S. P., Pratap K., Karnaneedi S., Taki A. C., Nugraha R., Schaeffer P. M., Rolland J. M., O’Hehir R. E., Mol. Immunol., 2019, 112, 330—337 |
14 | Wai H. M., Middelveld R., Thörnqvist V., Ballardini N., Nilsson E., Strömquist J., Nilsson L., Ahlstedt S., Protudjer J. L. P., World Allergy Organ., 2019, 12(9), 100061 |
15 | Ekezie F. G. C., Cheng J. H., Sun D. W., Trends Food Sci. Tech., 2018, 74, 12—25 |
16 | Sena⁃Torralba A., Pallás⁃Tamarit Y., Morais S., Maquieira Á., TrAC Trend. Anal. Chem., 2020, 132, 116050 |
17 | Holzhauser T., Johnson P., Hindley J. P., O'Connor G., Chan C. H., Costa J., Fæste C. K., Hirst B. J., Lambertini F., Miani M., Robert M. C., Röder M., Ronsmans S., Bugyi Z., Tömösközi S., Flanagan S. D., Food Chem. Toxicol., 2020, 145, 111709 |
18 | Suh S. M., Kim M. J., Kim H. I., Kim H. J., Kim H. Y., Food Chem., 2020, 317, 126451 |
19 | Blaschke V. M., Tran T. U., Naneh M., Zagon J., Winkel M., Food Control, 2023, 146, 109517. |
20 | Blaschke V., Berten A., Sprenger H., Zagon J., Winkel M., J. Agric. Food Chem., 2023, 71(31), 12029—12042 |
21 | Kim M. J., Kim H. I., Kim J. H., Suh S. M., Kim H. Y., Food Sci. Biotechnol., 2019, 28(2), 591—597 |
22 | Soroka M., Wasowicz B. A. O., Rymaszewska A. A. O., Electronic., 2021, 2073—4409 |
23 | Huang T., Li L., Liu X., Chen Q., Fang X., Kong J., Draz M. S., Cao H., Anal. Methods, 2020, 12(46), 5551—5561 |
24 | Sheu S. C., Yu M. T., Lien Y. Y., Lee M. S., Food Chem., 2020, 332, 127389 |
25 | Zhang Y., Yu Y., Song C., Li Y., Xiong W., Ge Y., J. Food Saf. Food Qual., 2019, 10 (7), 1804—1810 |
26 | Madrid R., García⁃García A., Cabrera P., González I., Martín R., García T., Foods, 2021, 10(2), 440 |
27 | Ruethers T., Taki A. C., Khangurha J., Roberts J., Buddhadasa S., Clarke D., Hedges C. E., Campbell D. E., Kamath S. D., Lopata A. L., J. Sci. Food Agr., 2020, 100(12), 4353—4363 |
28 | Liang J., Taylor S. L., Baumert J., Lee N. A., Food Chem., 2022, 396, 133656 |
29 | Tsai C. L., Chen I. N., Chen Y. T., Food Chem., 2023, 427, 136732 |
30 | Dasanayaka B. P., Zhao J., Zhang J., Huang Y., Khan M. U., Lin H., Li Z., Anal. Biochem., 2021, 635, 114448 |
31 | Sule R., Rivera G., Gomes A. V., BioTechniques, 2023, 75 (3), 99—114 |
32 | Cosme J., Spínola⁃Santos A., Bartolomé B., Pastor⁃Vargas C., Branco⁃Ferreira M., Pereira⁃Santos M., Pereira⁃Barbosa M., J. investig. allergol. clin. immunol., 2019, 29(2), 139—141 |
33 | Nihei M., Nakajima Y., Horino S., Kondo Y., Miura K., Pediatr. Int., 2022, 64 (1), e15163 |
34 | Ruethers T., Taki A. C., Karnaneedi S., Nie S., Kalic T., Dai D., Daduang S., Leeming M., Williamson N. A., Breiteneder H., Mehr S. S., Kamath S. D., Campbell D. E., Lopata A. L., Allergy, 2020, 76(5), 1443—1453 |
35 | Ruethers T., Taki A. C., Nugraha R., Cao T. T., Koeberl M., Kamath S. D., Williamson N. A., O'Callaghan S., Nie S., Mehr S. S., Cannpbell D. E., Lopata A. L., Allergy, 2019, 74(7), 1352—1363 |
36 | Nugraha R., Ruethers T., Taki A. C., Johnston E. B., Karnaneedi S., Kamath S. D., Lopata A. L., Foods, 2022, 11(3), 404 |
37 | Zhang M., Li M., Zhao Y., Xu N., Peng L., Wang Y., Wei X., Food Res. Int., 2021, 142, 110102 |
38 | Li M. Y., Development of Gold Magnetic Immunochromatographic Test Strips for Small Albumin, a Major Allergen in Fish, Shanghai Normal University, Shanghai, 2019 |
李梦银. 鱼类主要过敏原小清蛋白金磁免疫层析试纸条的研制. 上海: 上海师范大学, 2019 | |
39 | Xu J., Ye Y., Ji J., Sun J., Sun X., Crit. Rev. Food Sci. Nutr., 2022, 62(25), 6887—6907 |
40 | Li R., Zhang Y., Zhao J., Wang Y., Wang H., Zhang Z., Lin H., Li Z., J. Food Compos. Anal., 2022, 114, 104776 |
41 | Huang Y., Li R., Zhu W., Zhao J., Wang H., Zhang Z., Lin H., Li W., Li Z., Food Chem., 2024, 440, 138275 |
42 | Wu Y., Wang Y., Wang H., Li Y., Li Z., J. Food Saf. Qual., 2020, 11(12), 3783—3788 |
43 | Angulo⁃Ibáñez A., Eletxigerra U., Lasheras X., Campuzano S., Merino S., Anal. Chim. Acta, 2019, 1079, 94—102 |
44 | Zhou J., Wang Y., Zhou C., Zheng L., Fu L., Food Control, 2023, 144, 109380 |
45 | Wang Y., Li L., Li H., Peng Y., Fu L., Food Control, 2022, 132, 108552 |
46 | Zhang Y. X., Wu Q. P., Sun M., Zhang J. M., Mo S. P., Wang J., Wei X. H., Bai J. L., Sensor. Actuat. B: Chem., 2018, 263, 43—49 |
47 | Bianco M., Ventura G., Calvano C. D., Losito I., Cataldi T. R. I., Proteomics 2023, 23(23/24), e2200427 |
48 | Wu Y., Yao K., Yang Y., Wu X., Zhang J., Jin, Y., Xing Y., Niu Y., Jiang Q., Dai C., Food Chem. 2024, 439, 138170 |
49 | Chen Y. X., He X. R., Yang S. Q., Huan F., Li D. X., Yang Y., Chen G. X., Liu G. M., J. Agr. Food Chem., 2023, 71(24), 9508—9518 |
50 | Zhao X., Lu J., Long S., Soko W. C., Qin Q., Qiao L., Bi H., J. Agr. Food Chem., 2021, 69(43), 12909—12918 |
51 | Zhao X., Bi H., J. Agr. Food Chem., 2022, 70(24), 7525—7534 |
52 | Wang L., Bi H., Anal., 2022, 147(18), 4063—4072 |
53 | Lin F., Soko W. C., Xie J., Bi H., J. Agr. Food Chem., 2023, 71(36), 13546—13553 |
54 | Radomirović M., Gligorijević N., Stanić⁃Vučinić D., Rajković A., Ćirković Veličković T., Int. J. Mol. Sci., 2023, 24(20), 15410 |
55 | Luan H., Lu J., Li Y., Xu C., Shi W., Lu Y., Food Chem., 2023, 414, 135686 |
56 | Bowler A. L., Ozturk S., Rady A., Watson N., Sensors, 2022, 22(19), 7239 |
57 | Srisomsap C., Nonthawong K., Chokchaichamnankit D., Svasti J., Phiriyangkul P., Food Biosci., 2023, 54, 102803 |
58 | Zhang X., Li Y., Tao Y., Wang Y., Xu C., Lu Y., Food Chem., 2021, 337, 127986 |
59 | Eischeid A. C., Stadig S. R., Rallabhandi P., Food Addit. Contam. Part A, 2021, 38(4), 563—572 |
60 | Flicker S., Zettl I., Tillib S. V., Front. Immunol., 2020, 11, 576255 |
61 | Sharma N., Patiyal S., Dhall A., Pande A., Arora C., Raghava G. P. S., Brief. Bioinform., 2021, 22(4), 1—12 |
62 | Sheng K., Jiang H., Fang Y., Wang L., Jiang D., Trends Food Sci. Tech., 2022, 121, 93—104 |
[1] | ZHANG Yu, CHEN Long, WANG Zhongcai, HU Guang, XU Dong, SHENG Quankang, CHEN Ao, CHEN Shaoyun, HU Chenglong, CHEN Jian. Rapid Determination of D⁃(+)⁃Glucose in Urine Using Surface⁃enhanced Raman Spectroscopy [J]. Chem. J. Chinese Universities, 2024, 45(9): 20240215. |
[2] | ZHENG Delun, ZHANG Ruilong. Construction of an Ultrasensitive AFP Photoelectrochemical Analysis Based on the Efficient Carrier Separation Capability of p-n Heterojunction CuO/TiO2 Complexes [J]. Chem. J. Chinese Universities, 2024, 45(8): 20240183. |
[3] | GONG Wenpeng, ZHOU Linnan. Fluorescent Detection of Hydrogen Sulfide Using Metal-organic Framework CAU-10-NH-DNBA Functionalized with 3,5-Dinitrobenzoic Acid [J]. Chem. J. Chinese Universities, 2024, 45(8): 20240069. |
[4] | LIU Xingyu, ZHANG Xiaojing, XIANG Tingting, CHEN Shixin, MA Shuo, SHAO Huimin, CUI Bo, XIA Chunlong, LI Yan, BU Naishun, LI Cong. Preparation of Sulfur-containing Porous Aromatic Framework Materials and Their Dual Performance in Ultra-sensitive Detection and Simultaneous Removal of Mercury [J]. Chem. J. Chinese Universities, 2024, 45(7): 20240138. |
[5] | XIAO Hang, WANG Xiaoyan, DENG Zhaojia, LIAO Wenjing, XIE Wenjing, PENG Hanyong. Development of Nucleic Acid Isothermal Amplification Technologies for Virus Detection [J]. Chem. J. Chinese Universities, 2024, 45(7): 20240139. |
[6] | CHEN Yating, WANG Peng, GUO Baoying, FU Siyun, LIU Wanning, CHEN Shuyi, SHI Yu, CAI Songliang, ZHENG Shengrun, FAN Jun, ZHANG Weiguang. Assembly of Functionalized MIL-101(Cr)-loaded Quartz Crystal Microbalance Gas Sensors for Formic Acid Detection [J]. Chem. J. Chinese Universities, 2024, 45(6): 20240031. |
[7] | LI Lin, MA Jing, XU Changlin, CHEN Tongyao, GUO Hengyao, LI Ziyou, WU Wenxin. Room Temperature Driven Sodium Humate-protected Carbon Nanoclusters for Fluorescent and Colorimetric Sensing of Ag+ and Temperature [J]. Chem. J. Chinese Universities, 2024, 45(6): 20230510. |
[8] | ZHANG Mingfeng, WU Bo, HOU Guanghao, ZHOU Lei, WANG Xuezhong. The Method of Measuring Particle Size Distribution of Layered Double Hydroxides(LDHs) Using Ultrasonic Attenuation Spectroscopy [J]. Chem. J. Chinese Universities, 2024, 45(3): 20230463. |
[9] | JI Chao, LI Wen, ZHANG Lirong, HUA Jia, LIU Yunling. Construction of a Eu-MOF Material with Fe3+ and Nitro-aromatic Explosives Fluorescence Detection Performance [J]. Chem. J. Chinese Universities, 2024, 45(2): 20230455. |
[10] | CHEN Xiaoping, WANG Xutan, LIU Ning, WANG Qingxiang, NI Jiancong, YANG Weiqiang, LIN Zhenyu. MOFs-based Microfluidic Chips for Real-time Online Determination of Multiple Heavy Metal Ions [J]. Chem. J. Chinese Universities, 2024, 45(2): 20230395. |
[11] | CAO Ting, SHU Weikang, WAN Jingjing. Plasmonic Composites Aid Semi-quantitative Analysis and Identification of Low-molecular-weight Metabolites by Mass Spectrometry [J]. Chem. J. Chinese Universities, 2024, 45(11): 20240325. |
[12] | CAO Zhong, GUO Peixian, XUE Shulei, XIAO Zhongliang, TAN Shuqi, KANG Xuan, FENG Zemeng, YIN Yulong, MA Tianji. Sensitive Detection of L⁃Arginine Using Peptide Aptamer Functionalized Nanochannel [J]. Chem. J. Chinese Universities, 2023, 44(6): 20220758. |
[13] | WANG Ri, BIAN Chao, XIE Yong, HAN Mingjie, LI Yang, XIA Shanhong. Novel Electrochemical Sensor Based on Molybdenum Disulfide and Cobalt Based Metal Organic Frameworks Nanocomposites for Trace Mercury Detection [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220719. |
[14] | FANG Xin, ZHAO Ruiqi, MO Jing, WANG Yafen, WENG Xiaocheng. Sequencing Methods for Detection of Nucleic Acid Epigenetic Modifications [J]. Chem. J. Chinese Universities, 2023, 44(3): 20220342. |
[15] | HE Yinming, KONG Sudong, LIN Jianguo, XIE Minhao, CHENG Liang. Research Advances of Detection Approaches Towards N4-Acetylcytidine(ac4C) RNA [J]. Chem. J. Chinese Universities, 2023, 44(3): 20220319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||