Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (7): 20240139.doi: 10.7503/cjcu20240139
• Review • Previous Articles
XIAO Hang1,2, WANG Xiaoyan1,2, DENG Zhaojia1,2, LIAO Wenjing1,2,3, XIE Wenjing1,2, PENG Hanyong1,2()
Received:
2024-03-25
Online:
2024-07-10
Published:
2024-05-15
Contact:
PENG Hanyong
E-mail:hypeng@rcees.ac.cn
Supported by:
CLC Number:
TrendMD:
XIAO Hang, WANG Xiaoyan, DENG Zhaojia, LIAO Wenjing, XIE Wenjing, PENG Hanyong. Development of Nucleic Acid Isothermal Amplification Technologies for Virus Detection[J]. Chem. J. Chinese Universities, 2024, 45(7): 20240139.
Method | Enzymes | Temperature/℃ | Reaction time/h | Efficiency | Ref. |
---|---|---|---|---|---|
NASBA | 2 | ca. 41 | 1.5—2 | 106—109 | [ |
RCA | 2 | 60—65 | 1—3 | 103—109 | [ |
SDA | 2 | 37—70 | 2 | 107 | [ |
LAMP | 1 | 60—65 | 1—2 | 107—109 | [ |
HDA | 2 | 37—65 | 0.5—2 | 106 | [ |
RPA | 3 | 37—42 | 0.5—1.5 | 107—109 | [ |
EXPAR | 2 | 60 | <0.5 | 106—108 | [ |
CHA | — | 25—37 | 1 | 7000(two layers) | [ |
HCR | — | 25—37 | — | — | [ |
EDC | — | 25—37 | 1 | — | [ |
Table 1 Summary of isothermal amplification methods
Method | Enzymes | Temperature/℃ | Reaction time/h | Efficiency | Ref. |
---|---|---|---|---|---|
NASBA | 2 | ca. 41 | 1.5—2 | 106—109 | [ |
RCA | 2 | 60—65 | 1—3 | 103—109 | [ |
SDA | 2 | 37—70 | 2 | 107 | [ |
LAMP | 1 | 60—65 | 1—2 | 107—109 | [ |
HDA | 2 | 37—65 | 0.5—2 | 106 | [ |
RPA | 3 | 37—42 | 0.5—1.5 | 107—109 | [ |
EXPAR | 2 | 60 | <0.5 | 106—108 | [ |
CHA | — | 25—37 | 1 | 7000(two layers) | [ |
HCR | — | 25—37 | — | — | [ |
EDC | — | 25—37 | 1 | — | [ |
Product | Technique | Target | Cost | Testing time | Type | Biotech company | Ref. |
---|---|---|---|---|---|---|---|
NucliSens EasyQ | NASBA | virus RNA | $50, 000 | 1 h | Automated analysis methods | Biomeriux | [ |
OligoC⁃TesT | NASBA | Leishmania parasites DNA | $26/test | 1 h | Kit | Coris Bio Concept, Belguim | [ |
BESt Cassette Type II | HDA | Staphylococcus aureus DNA | $10/test | 1 h | Kit | BioHelix, USA | [ |
Illumigene(Alethia) | LAMP | Clostridium difficile DNA | $30.6/test | 40 min | Kit | Meridian Bioscience, USA | [ |
Loopamp MTBC Detection Kit® | LAMP | Mycobacterium tuberculosis DNA | $5.7/test | 30 min | Kit | Eiken Chemical Co, Japan | [ |
Eazyplex® | LAMP | Bacterial pathogens | — | 30 min | Kit | Amplex Diagnostics GmbH, Germany | [ |
3MTM Molecular Detection System | LAMP | Salmonella DNA | — | 75 min | Kit | 3M, USA | [ |
Genie III | LAMP | Ebola virus RNA | $13, 000 | 15-20 min | Automated analysis methods | OptiGene, UK | [ |
Solana® | HDA | Trichomonas DNA | — | 1 h | Kit | Quidel Corporation, USA | [ |
BD ProbeTecTM | SDA | Chlamydia trachomatis, gonorrhoeae DNA | — | 3 h | Kit/Automated analysis methods | BD Diagnostics, USA | [ |
Table 2 Summary of reagent kits and assay methods based on isothermal amplification technology
Product | Technique | Target | Cost | Testing time | Type | Biotech company | Ref. |
---|---|---|---|---|---|---|---|
NucliSens EasyQ | NASBA | virus RNA | $50, 000 | 1 h | Automated analysis methods | Biomeriux | [ |
OligoC⁃TesT | NASBA | Leishmania parasites DNA | $26/test | 1 h | Kit | Coris Bio Concept, Belguim | [ |
BESt Cassette Type II | HDA | Staphylococcus aureus DNA | $10/test | 1 h | Kit | BioHelix, USA | [ |
Illumigene(Alethia) | LAMP | Clostridium difficile DNA | $30.6/test | 40 min | Kit | Meridian Bioscience, USA | [ |
Loopamp MTBC Detection Kit® | LAMP | Mycobacterium tuberculosis DNA | $5.7/test | 30 min | Kit | Eiken Chemical Co, Japan | [ |
Eazyplex® | LAMP | Bacterial pathogens | — | 30 min | Kit | Amplex Diagnostics GmbH, Germany | [ |
3MTM Molecular Detection System | LAMP | Salmonella DNA | — | 75 min | Kit | 3M, USA | [ |
Genie III | LAMP | Ebola virus RNA | $13, 000 | 15-20 min | Automated analysis methods | OptiGene, UK | [ |
Solana® | HDA | Trichomonas DNA | — | 1 h | Kit | Quidel Corporation, USA | [ |
BD ProbeTecTM | SDA | Chlamydia trachomatis, gonorrhoeae DNA | — | 3 h | Kit/Automated analysis methods | BD Diagnostics, USA | [ |
1 | Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., N. Engl. J. Med., 2020, 382(8), 727—733 |
2 | Liu R., Han H., Liu F., Lv Z., Wu K., Liu Y., Feng Y., Zhu C., Clin. Chim. Acta, 2020, 505, 172—175 |
3 | Wu F., Zhao S., Yu B., Chen Y. M., Wang W., Song Z. G., Hu Y., Tao Z. W., Tian J. H., Pei Y. Y., Nature, 2020, 579(7798), 265—269 |
4 | Zhou P., Yang X. L., Wang X. G., Hu B., Zhang L., Zhang W., Si H. R., Zhu Y., Li B., Huang C. L., Nature, 2020, 579(7798), 270—273 |
5 | Corman V. M., Landt O., Kaiser M., Molenkamp R., Meijer A., Chu D. K., Bleicker T., Brünink S., Schneider J., Schmidt M. L., Eurosurveillance, 2020, 25(3), 2000045 |
6 | Zhao Y., Chen F., Li Q., Wang L., Fan C., Chem. Rev., 2015, 115(22), 12491—12545 |
7 | Wang W., Xu Y., Gao R., Lu R., Han K., Wu G., Tan W., J. Am. Med. Assoc., 2020, 323(18), 1843—1844 |
8 | Organization W. H., World Health Organization, 2020 |
9 | Henningson E. W., Ahlberg M. S., J. Aerosol. Sci., 1994, 25(8), 1459—1492 |
10 | Truyols V. J., Stiliyanov A. K., Sala L. E., Toledo P. N., Baldovi H. G., Mercader B. J., J. Hosp. Infect., 2022, 130, 44—51 |
11 | Tedeschini E., Pasqualini S., Emiliani C., Marini E., Valecchi A., Laoreti C., Ministrini S., Camilloni B., Castronari R., Patoia L., Merante F., Baglioni S., De R. E., Pirro M., Mencacci A., Pasqualini L., Front. Public. Health., 2023, 11, 1169073 |
12 | Tan K. S., Ang A. X. Y., Tay D. J. W., Somani J., Ng A. J. Y., Peng L. L., Chu J. J. H., Tambyah P. A., Allen D. M., Front. Public. Health., 2023, 10, 1067575 |
13 | Qiu G., Spillmann M., Tang J., Zhao Y. B., Tao Y., Zhang X., Geschwindner H., Saleh L., Zingg W., Wang J., Adv. Sci, 2022, 9(35), 2204774 |
14 | Alonso C., Raynor P. C., Davies P. R., Torremorell M., PLoS One, 2015, 10(8), e0135675 |
15 | Silva P. G., Branco P. T. B. S., Soares R. R. G., Mesquita J. R., Sousa S. I. V., Indoor Air, 2022, 32(8), e13083 |
16 | Verreault D., Moineau S., Duchaine C., Microbiol. Mol. Biol. Rev., 2008, 72(3), 413—444 |
17 | Bazzazpour S., Rahmatinia M., Mohebbi S. R., Hadei M., Shahsavani A., Hopke P. K., Houshmand B., Raeisi A., Jafari A. J., Yarahmadi M., Farhadi M., Hasanzadeh V., Kermani M., Vaziri M. H., Tanhaei M., Zali M. R., Alipour M. R., Environ. Sci. Pollut. Res., 2022, 29(57), 85586—85594 |
18 | Feng X. L., Li B., Lin H. F., Zheng H. Y., Tian R. R., Luo R. H., Liu M. Q., Jiang R. D., Zheng Y. T., Shi Z. L., Bi Y. H., Yang X. L., Virol. Sin., 2021, 36(5), 1069—1072 |
19 | Park G. W., Lee D., Treffiletti A., Hrsak M., Shugart J., Vinje J., Appl. Environ. Microbiol., 2015, 81(17), 5987—5992 |
20 | Kong J., Li W., Hu J., Zhao S., Yue T., Li Z., Xia Y., Foods, 2022, 11(11), 1540 |
21 | Santiago R. T. M., Water, 2022, 14(4), 599 |
22 | Ahmed W., Bivins A., Bertsch P. M., Bibby K., Choi P. M., Farkas K., Gyawali P., Hamilton K. A., Haramoto E., Kitajima M., Simpson S. L., Tandukar S., Thomas K. V., Mueller J. F., Curr. Opin. Environ. Sci. Health, 2020, 17, 82—93 |
23 | Buonerba A., Corpuz M. V. A., Ballesteros F., Choo K. H., Hasan S. W., Korshin G. V., Belgiorno V., Barcelo D., Naddeo V., J. Hazard. Mater., 2021, 415, 125580 |
24 | Cervantes Aviles. P., Moreno Andrade. I., Carrillo Reyes. J., J. Water Process. Eng., 2021, 40, 101947 |
25 | Sim S. L., He T., Tscheliessnig A., Mueller M., Tan R. B. H., Jungbauer A., J. Biotechnol., 2012, 157(2), 315—319 |
26 | La R. G., Iaconelli M., Mancini P., Ferraro G. B., Veneri C., Bonadonna L., Lucentini L., Suffredini E., Sci. Total Environ., 2020, 736, 139652 |
27 | Sherchan S. P., Shahin S., Ward L. M., Tandukar S., Aw T. G., Schmitz B., Ahmed W., Kitajima M., Sci. Total Environ., 2020, 743, 140621 |
28 | Jafferali M. H., Khatami K., Atasoy M., Birgersson M., Williams C., Cetecioglu Z., Sci. Total Environ., 2021, 755, 142939 |
29 | Bar Y. M., Flamholz A., Phillips R., Milo R., eLife, 2020, 9, e57309 |
30 | Mousazadeh M., Ashoori R., Paital B., Kabdasli I., Frontistis Z., Hashemi M., Sandoval M. A., Sherchan S., Das K., Emamjomeh M. M., Pathogens, 2021, 10(8), 1008 |
31 | Qiu Y., Lee B. E., Ruecker N. J., Neumann N., Ashbolt N., Pang X., J. Virol. Methods, 2016, 237, 150—153 |
32 | Fang Y., Zhang H., Xie J., Lin M., Ying L., Pang P., Ji W., Radiology, 2020, 296(2), 115—117 |
33 | Ali N., Rampazzo R. C. P., Costa A. D. T., Krieger M. A., Biomed Res. Int., 2017, 9306564 |
34 | Chu A. W. H., Chan W. M., Ip J. D., Yip C. C. Y., Chan J. F. W., Yuen K. Y., To K. K. W., J. Clin. Virol., 2020, 129, 104519 |
35 | Ning B., Yu T., Zhang S., Huang Z., Tian D., Lin Z., Niu A., Golden N., Hensley K., Threeton B., Sci. Adv., 2021, 7(2), eabe3703 |
36 | Mondal S., Feirer N., Brockman M., Preston M. A., Teter S. J., Ma D., Goueli S. A., Moorji S., Saul B., Cali J. J., Sci. Total Environ., 2021, 795, 148834 |
37 | Tripathy S., Agarkar T., Talukdar A., Sengupta M., Kumar A., Ghosh S., Talanta, 2023, 252, 123809 |
38 | Ma Y. D., Chen Y. S., Lee G. B., Sens. Actuators B-Chem., 2019, 296, 126647 |
39 | Zong N., Gao Y., Chen Y., Luo X., Jiang X., Anal. Chem. 2022, 94(12), 5196—5203 |
40 | Gao S., Wang J., Li D., Li Y., Lou C., Zha E., Yue X., Tie Z. Z.. Int. J. Food Microbiol., 2020, 322, 108587 |
41 | Xi Y., Xu C. Z., Xie Z. Z., Zhu D. L., Dong J. M., Xiao G., Mol. Cell. Probes, 2019, 45, 8—13 |
42 | Chomczynski P., Sacchi N., Anal. Biochem., 1987, 162(1), 156—159 |
43 | Iovieno A., Miller D., Lonnen J., Kilvington S., Alfonso E. C., J. Clin. Microbiol., 2011, 49(1), 476—477 |
44 | Bai Y., Cui Y., Paoli G. C., Shi C., Wang D., Zhou M., Zhang L., Shi X., Colloid Surface B, 2016, 145, 257—266 |
45 | Sun N., Deng C., Liu Y., Zhao X., Tang Y., Liu R., Xia Q., Yan W., Ge G., J. Chromatogr. A, 2014, 1325, 31—39 |
46 | Chomczynski P., Sacchi N., Nat. Protoc., 2006, 1(2), 581—585 |
47 | Chu D. K., Pan Y., Cheng S. M., Hui K. P., Krishnan P., Liu Y., Ng D. Y., Wan C. K., Yang P., Wang Q., Clin. Chem., 2020, 66(4): 549-555 |
48 | Ambrosi C., Prezioso C., Checconi P., Scribano D., Sarshar M., Capannari M., Tomino C., Fini M., Garaci E., Palamara A. T., J. Virol. Methods, 2021, 287, 114008 |
49 | Barnes K. G., Lachenauer A. E., Nitido A., Siddiqui S., Gross R., Beitzel B., Siddle K. J., Freije C. A., Dighero K. B., Mehta S. B., Carter A., Uwanibe J., Ajogbasile F., Olumade T., Odia I., Sandi J. D., Momoh M., Metsky H. C., Boehm C. K., Lin A. E., Kemball M., Park D. J., Branco L., Boisen M., Sullivan B., Amare M. F., Tiamiyu A. B., Parker Z. F., Iroezindu M., Grant D. S., Modjarrad K., Myhrvold C., Garry R. F., Palacios G., Hensley L. E., Schaffner S. F., Happi C. T., Colubri A., Sabeti P. C., Nat. Commun., 2020, 11(1), 4131 |
50 | Arizti S. J., Freije C. A., Stanton A. C., Petros B. A., Boehm C. K., Siddiqui S., Shaw B. M., Adams G., Kosoko T. T. S. F., Kemball M. E., Nat. Commun., 2020, 11(1), 5921 |
51 | Odiwuor N., Xiong J., Ogolla F., Hong W., Li X., Khan F. M., Wang N., Yu J., Wei H., Anal. Chim. Acta, 2022, 1200, 339590 |
52 | Myhrvold C., Freije C. A., Gootenberg J. S., Abudayyeh O. O., Metsky H. C., Durbin A. F., Kellner M. J., Tan A. L., Paul L. M., Parham L. A., Garcia K. F., Barnes K. G., Chak B., Mondini A., Nogueira M. L., Isern S., Michael S. F., Lorenzana I., Yozwiak N. L., MacInnis B. L., Bosch I., Gehrke L., Zhang F., Sabeti P. C., Science, 2018, 360(6387), 444—448 |
53 | Mautner L., Baillie C. K., Herold H. M., Volkwein W., Guertler P., Eberle U., Ackermann N., Sing A., Pavlovic M., Goerlich O., Busch U., Wassill L., Huber I., Baiker A., Virol. J., 2020, 17(1), 160 |
54 | Cao G., Xiong Y., Qiu Y., Yang J., Wang Y., Nie F., Huo D., Hou C., Anal. Chim. Acta, 2023, 1280, 341865 |
55 | Krolov K., Frolova J., Tudoran O., Suhorutsenko J., Lehto T., Sibul H., Mager I., Laanpere M., Tulp I., Langel U., J. Mol. Diagn., 2014, 16(1), 127—135 |
56 | Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T., Nucleic Acids Res., 2000, 28(12), e63 |
57 | Piepenburg O., Williams C. H., Stemple D. L., Armes N. A., PLoS Biol., 2006, 4(7), e204 |
58 | Tan E., Erwin B., Dames S., Ferguson T., Buechel M., Irvine B., Voelkerding K., Niemz A., Biochemistry, 2008, 47(38), 9987—9999 |
59 | Tomita N., Mori Y., Kanda H., Notomi T., Nat. Protoc., 2008, 3(5), 877—882 |
60 | Wei Z., Wang X., Feng H., Ji F., Bai D., Dong X., Huang W., Crit. Rev. Biotechnol., 2023, 43(3), 415—432 |
61 | Alhamid G., Tombuloglu H., Al-Suhaimi E., Sci. Rep., 2023, 13(1), 5066 |
62 | Yu Z., Lyu W., Yu M., Wang Q., Qu H., Ismagilov R. F., Han X., Lai D., Shen F., Biosens. Bioelectron., 2020, 155, 112107 |
63 | Lyu W., Zhang J., Yu Y., Xu L., Shen F., Lab Chip, 2021, 21(16), 3086—3093 |
64 | Yuan R., Wei J., Geng R., Li B., Xiong W., Fang X., Wang K., Sens. Actuators B-Chem., 2023, 380, 133363 |
65 | Crannell Z. A., Rohrman B., Richards K. R., Anal. Chem., 2014, 86(12), 5615—5619 |
66 | Gao X., Chen Y., Luo X., Du Z., Hao K., An M., Xia Z., Wu Y., ACS Omega, 2021, 6(28), 18008—18013 |
67 | Khater M., Escosura M. A., Altet L., Merkoci A., Anal. Chem., 2019, 91(7), 4790—4796 |
68 | Zhao C., Yang L., Zhang X., Tang Y., Wang Y., Shao X., Gao S., Liu X., Wang P., Anal. Chem., 2022, 94(49), 17151—17159 |
69 | Van N. J., Van N. L. K., Galas D. J., Proc. Natl. Acad. Sci. USA, 2003, 100(8), 4504—4509 |
70 | Carter J. G., Orueta I. L., Duprey J. H. A., Carter I. R., Southern C. D., Rana M., Whalley C. M., Bosworth A., Beggs A. D., Hicks M. R., Tucker J. H. R., Dafforn T. R., Proc. Natl. Acad. Sci. USA, 2021, 118(35), e2100347118 |
71 | Chen J., Zhu D., Huang T., Yang Z., Liu B., Sun M., Chen J. X., Dai Z., Zou X., Anal. Chem., 2021, 93(37), 12707—12713 |
72 | Compton J., Nature, 1991, 350(6313), 91—92 |
73 | Cordray M. S., Richards K. R. R., Am. J. Trop. Med. Hyg., 2012, 87(2), 223—230 |
74 | Walker G. T., Little M. C., Nadeau J. G., Shank D. D., Proc. Natl. Acad. Sci. USA, 1992, 89(1), 392—396 |
75 | Zhang C., Zheng T., Fan H., Zhang T., Han D., ACS Appl, Bio. Mater., 2021, 4(5), 3805—3810 |
76 | Daubendiek S. L., Ryan K., Kool E. T., J. Am. Chem. Soc., 1995, 117(29), 7818—7819 |
77 | Wang B., Potter S. J., Lin Y., Cunningham A. L., Dwyer D. E., Su Y., Ma X., Hou Y., Saksena N. K., J. Clin. Microbiol., 2005, 43(5), 2339—2344 |
78 | Vincent M., Xu Y., Kong H., Embo Rep., 2004, 5(8), 795—800 |
79 | Gaydos C. A., Schwebke J., Dombrowski J., Marrazzo J., Coleman J., Silver B., Barnes M., Crane L., Fine P., Expert Rev. Mol. Diagn., 2017, 17(3), 303—306 |
80 | Kowalski R. P., Karenchak L. M., Dhaliwal D. K., Mammen A., Eye Contact Lens., 2018, 44, S244—S248 |
81 | Barreda G. S., Miranda C. R., De L. S. A. N., Miranda O. A. J., Lobo C. M. J., Anal. Bioanal. Chem., 2018, 410(3), 679—693 |
82 | Li B., Ellington A. D., Chen X., Nucleic Acids. Res., 2011, 39(16), e110 |
83 | Dirks R. M., Pierce N. A., Proc. Natl. Acad. Sci. USA, 2004, 101(43), 15275—15278 |
84 | Li Y., Luo Z., Zhang C., Sun R., Zhou C., Sun C., TrAC-Trends Anal. Chem., 2021, 134, 116142 |
85 | Luo Z., Li Y., Zhang P., He L., Feng Y., Feng Y., Qian C., Tian Y., Duan Y., TrAC⁃Trends Anal. Chem., 2022, 151, 116582 |
86 | Yin P., Choi H. M., Calvert C. R., Pierce N. A., Nature, 2008, 451(7176), 318—322 |
87 | Zou M., Su F., Zhang R., Jiang X., Xiao H., Yan X., Yang C., Fan X., Wu G., Sens. Actuators B: Chem., 2021, 342(1), 129899 |
88 | Liang G. X., Ye S. Y., Yu H. M., Zhao K. R., Liu P. F., Liu Z. J., Wang L., Sens. Actuators B: Chem., 2022, 354, 131199 |
89 | Fu J., Wu J., Zhang R., Wu Q., Ju H., Sens. Actuators B: Chem., 2021, 345(15), 130436 |
90 | Lee H., Lee S., Park C., Yeom M., Lim J. W., Vu T. T. H., Kim E., Song D., Haam S., Small, 2023, 19(26), e2207117 |
91 | Fan Z., Yao B., Ding Y., Zhao J., Xie M., Zhang K., Biosens. Bioelectron., 2021, 178, 113015 |
92 | Zhang K., Fan Z., Ding Y., Zhu S., Xie M., Hao N., Environ. Sci.: Nano, 2022, 9(1), 162—172 |
93 | Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E., Science, 2012, 337(6096), 816—821 |
94 | Huang M., Zhou X., Wang H., Xing D., Anal. Chem., 2018, 90(3), 2193—2200 |
95 | Santiago F. A., Hall L. N., Nemudraia A., Nemudryi A., Krishna P., Wiegand T., Wilkinson R. A., Snyder D. T., Hedges J. F., Cicha C., Cell Rep. Med., 2021, 2(6), 100319 |
96 | Chen J. S., Ma E., Harrington L. B., Da Costa. M., Tian X., Palefsky J. M., Doudna J. A., Science, 2018, 360(6387), 436—439 |
97 | Broughton J. P., Deng X., Yu G., Fasching C. L., Servellita V., Singh J., Miao X., Streithorst J. A., Granados A., Sotomayor G. A., Nat. Biotechnol., 2020, 38(7), 870—874 |
98 | Gootenberg J. S., Abudayyeh O. O., Lee J. W., Essletzbichler P., Dy A. J., Joung J., Verdine V., Donghia N., Daringer N. M., Freije C. A., Myhrvold C., Bhattacharyya R. P., Livny J., Regev A., Koonin E. V., Hung D. T., Sabeti P. C., Collins J. J., Zhang F., Science, 2017, 356(6336), 438—442 |
99 | Myhrvold C., Freije C. A., Gootenberg J. S., Abudayyeh O. O., Metsky H. C., Durbin A. F., Kellner M. J., Tan A. L., Paul L. M., Parham L. A., Science, 2018, 360(6387), 444—448 |
100 | Harrington L. B., Burstein D., Chen J. S., Paez E. D., Ma E., Witte I. P., Cofsky J. C., Kyrpides N. C., Banfield J. F., Doudna J. A., Science, 2018, 362(6416), 839—842 |
101 | Gootenberg J. S., Abudayyeh O. O., Kellner M. J., Joung J., Collins J. J., Zhang F., Science, 2018, 360(6387), 439—444 |
102 | Kellner M. J., Koob J. G., Gootenberg J. S., Abudayyeh O. O., Zhang F., Nat. Protoc., 2019, 14(10), 2986—3012 |
103 | Yang F., Wang W., Zhang M., Tao W., Wang Y., Shi J., Ding Y., Xie M., Zhang S., Fan Z., Zhang K., Environ. Sci.: Nano, 2022, 9(9), 3417—3426 |
104 | Kachwala M. J., Smith C. W., Nandu N., Yigit M. V., Anal. Chem., 2021, 93(4), 1934—1938 |
105 | Zhao R., Yu C., Lu B., Li B., RSC Adv., 2022, 12(17), 10374—10378 |
106 | Yang Y., Yi W., Gong F., Tan Z., Yang Y., Shan X., Xie C., Ji X., Zheng Z., He Z., Anal. Chem., 2023, 95(2), 1343—1349 |
107 | Ding X., Yin K., Li Z., Lalla R. V., Ballesteros E., Sfeir M. M., Liu C., Nat. Commun., 2020, 11(1), 4711 |
108 | Peng R., Lu Z., Liu M., Hu F., Sens. Actuators B: Chem., 2024, 399(15), 134838 |
109 | Joung J., Ladha A., Saito M., Kim N. G., Woolley A. E., Segel M., Barretto R. P., Ranu A., Macrae R. K., Faure G., N. Engl. J. Med., 2020, 383(15), 1492—1494 |
110 | Ghouneimy A., Ali Z., Aman R., Jiang W., Aouida M., Mahfouz M., ACS Synth. Biol., 2024, 13(3), 837—850 |
111 | Chen S., Wu C., Qian C., Pang Y., Guo K., Wang T., Bai L., Qian F., Ye Z., Liu Z., Qiao Z., Wang Y., Wang R., Anal. Chem., 2024, 96(7), 3145—3152 |
112 | Ooi K. H., Liu M. M., Tay J. W. D., Teo S. Y., Kaewsapsak P., Jin S., Lee C. K., Hou J., Maurer S. S., Lin W., Yan B.,Yan G., Gao Y. G., Tan M. H., Nat. Commun., 2021, 12(1), 1739 |
113 | Wang R., Qian C., Pang Y., Li M., Yang Y., Ma H., Zhao M., Qian F., Yu H., Liu Z., Biosens. Bioelectron., 2021, 172, 112766 |
114 | Pang B., Xu J., Liu Y., Peng H., Feng W., Cao Y., Wu J., Xiao H., Pabbaraju K., Tipples G., Anal. Chem., 2020, 92(24), 16204—16212 |
115 | Chen Y., Shi Y., Chen Y., Yang Z., Wu H., Zhou Z., Li J., Ping J., He L., Shen H., Biosens. Bioelectron., 2020, 169, 112642 |
116 | Gu W., Crawford E. D., O'Donovan B D., Wilson M. R., Chow E. D., Retallack H., DeRisi J. L., Genome. Biol., 2016, 17, 41 |
117 | Quan J., Langelier C., Kuchta A., Batson J., Teyssier N., Lyden A., Caldera S., McGeever A., Dimitrov B., King R., Wilheim J., Murphy M., Ares L. P., Travisano K. A., Sit R., Amato R., Mumbengegwi D. R., Smith J. L., Bennett A., Gosling R., Mourani P. M., Calfee C. S., Neff N. F., Chow E. D., Kim P. S., Greenhouse B., DeRisi J. L., Crawford E. D., Nucleic Acids. Res., 2019, 47(14), e83 |
118 | Zhou W., Hu L., Ying L., Zhao Z., Chu P. K., Yu X. F., Nat. Commun., 2018, 9(1), 5012 |
119 | Wang T., Liu Y., Sun H. H., Yin B. C., Ye B. C., Angew. Chem., Int. Ed. Engl., 2019, 58(16), 5382—5386 |
120 | Pardee K., Green A. A., Takahashi M. K., Braff D., Lambert G., Lee J. W., Ferrante T., Ma D., Donghia N., Fan M., Daringer N. M., Bosch I., Dudley D. M., O'connor D. H., Gehrke L., Collins J. J., Cell, 2016, 165(5), 1255—1266 |
121 | Oliveira B. B., Veigas B., Baptista P. V., Front. Sens., 2021, 2, 752600 |
122 | Morris U., Aydin S. B., Diagnostics, 2021, 11(2), 336 |
123 | Egerer R., Edel B., Loffler B., Henke A., Rodel J., J. Clin. Virol., 2021, 138, 104817 |
124 | De M. C., Koppelman M., Montes B., Ferre V., Soriano V., Cuypers H., Segondy M., Oosterlaken T., J. Virol. Methods, 2005, 127(1), 54—59 |
125 | Garrido C., Zahonero N., Corral A., Arredondo M., Soriano V., De M. C., J. Clin. Microbiol., 2009, 47(4), 1031—1036 |
126 | Saad A. A., Ahmed N. G., Osman O. S., Al B. A. A., Hamad A., Deborggraeve S., Buscher P., Schoone G. J., Schallig H. D., Laurent T., Haleem A., Osman O. F., Eltom A. M., Elbashir M. I., El S. S., PLoS Negl. Trop. Dis., 2010, 4(8), e776 |
127 | Carson C., Quinnell R. J., Holden J., Garcez L. M., Deborggraeve S., Courtenay O., J. Clin. Microbiol., 2010, 48(9), 3325—3330 |
128 | Capaul S. E., Gorgievski H. M., J. Clin. Virol., 2005, 32(3), 236—240 |
129 | Tong Y., Lemieux B., Kong H., BMC Biotechnol., 2011, 11(1), 1—7 |
130 | Noren T., Unemo M., Magnusson C., Eiserman M., Matussek A., APMIS, 2014, 122(2), 155—160 |
131 | Rakotosamimanana N., Lapierre S. G., Raharimanga V., Raherison M. S., Knoblauch A. M., Raherinandrasana A. H., Rakotoson A., Rakotonirina J., Rasolofo V., BMC Infect. Dis., 2019, 19(1), 542 |
132 | Lim H. S., Zheng Q., Miks K. M., Turner M., Yuk H. G., J. Food Prot., 2015, 78(6), 1203—1207 |
133 | Kurosaki Y., Magassouba N., Oloniniyi O. K., Cherif M. S., Sakabe S., Takada A., Hirayama K., Yasuda J., PLoS Negl. Trop. Dis., 2016, 10(2), e0004472 |
134 | Van D. P. B., Williams J. A., Fuller D., Taylor S. N., Hook E. W., J. Clin. Microbiol., 2017, 55(1), 155—164 |
[1] | HAO Qiangjun, YE Zi, WEN Bei, PENG Hanyong. Development of Nucleic Acid-mediated Nanomaterials and Their Applications [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230125. |
[2] | TANG Xiaomeng, YUAN Bifeng, FENG Yuqi. Functions of Plant RNA Modifications and Their Analytical Methods [J]. Chem. J. Chinese Universities, 2023, 44(3): 20220265. |
[3] | HE Yinming, KONG Sudong, LIN Jianguo, XIE Minhao, CHENG Liang. Research Advances of Detection Approaches Towards N4-Acetylcytidine(ac4C) RNA [J]. Chem. J. Chinese Universities, 2023, 44(3): 20220319. |
[4] | LIU Hong, JIANG Jinghong, DUAN Zhijuan, XU Shijun, HUANG Fujian, XIA Fan. Recent Advance in Light-controlled CRISPR Technology [J]. Chem. J. Chinese Universities, 2021, 42(11): 3321. |
[5] | HUANG Ling, ZHUANG Zijian, LI Xiang, SHI Muling, LIU Gaoqiang. Advances in Molecular Recognition of Exosomes Based on Aptamers [J]. Chem. J. Chinese Universities, 2021, 42(11): 3493. |
[6] | LIU Xuejiao, YANG Fan, LIU Shuang, ZHANG Chunjuan, LIU Qiaoling. Progress in Aptamer-targeted Membrane Protein Recognition and Functional Regulation [J]. Chem. J. Chinese Universities, 2021, 42(11): 3277. |
[7] | LIU Ke, JIN Yu, LIANG Jiangong, WU Yuan. Research Progress on Improving the Binding Affinity of Aptamers through Chemical Modification [J]. Chem. J. Chinese Universities, 2021, 42(11): 3477. |
[8] | JI Cailing, CHENG Xing, TAN Jie, YUAN Quan. Selection of Functionalized Aptamers and Their Applications in Molecular Recognition [J]. Chem. J. Chinese Universities, 2021, 42(11): 3457. |
[9] | DONG Qian, LI Zhaoqian, PENG Tianhuan, CHEN Zhuo, TAN Weihong. Progress on Aptamer for Cancer Theranostics [J]. Chem. J. Chinese Universities, 2020, 41(12): 2648. |
[10] | YAN Lei, MAO Xiuhai, ZUO Xiaolei. Biomimicry of Cellular Membrane with Framework Nucleic Acids† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1415. |
[11] | TANG Ji-Jun, XU Hua, CHEN Jia, GUO Lei, XIE Jian-Wei. Establishment and Application of a Magnetic Separation-based Aptameric Real-time Quantitative PCR Detection Approach [J]. Chem. J. Chinese Universities, 2013, 34(5): 1115. |
[12] | JIANG Xiao-Hua, LIU Wei-Qiang, CHEN Jian-Jun. Application of DNA-overoxidized Polypyrrole Composite Biosensor [J]. Chem. J. Chinese Universities, 2007, 28(3): 450. |
[13] | YANG Yuan-Yuan1, ZHANG Zhi-Chao1, SHENG Hui2, LIU Feng-Yu1, QIAN Xu-Hong1,3, XU Qin1, ZHANG Jing1,4. Studies on the Binding Geometry of Intercalation of 4-(2-Diethylamino-ethylamino)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile to DNA by Molecular Spectra [J]. Chem. J. Chinese Universities, 2007, 28(3): 453. |
[14] | LIANG Yuan-Jun, HE Jun-Lin, XU Liang, ZHANG Di, LIU Ke-Liang. Chemical Synthesis and Stability of Oligonucleotides Modified by Alkyl- or Alkoxy- on the Phosphonates [J]. Chem. J. Chinese Universities, 2007, 28(3): 467. |
[15] | WANG Lan, GENG Zai-Xin, LU Xiao-Quan, LIU Hong-De, WANG Rui, CHEN Jing. Predictive Studies on Interaction Between DNA and Target Molecules [J]. Chem. J. Chinese Universities, 2007, 28(1): 34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||