Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (6): 20220070.doi: 10.7503/cjcu20220070
• Analytical Chemistry • Previous Articles Next Articles
LIU Xiaolei1,2(), LU Yongqiang1, YOU Qi1, LIU Guohui1, YAO Wei3(
), HU Riming1, YAN Jixian4, CUI Yu1, YANG Xiaofeng1, SUN Guoxin1, JIANG Xuchuan1(
)
Received:
2022-01-28
Online:
2022-06-10
Published:
2022-03-03
Contact:
LIU Xiaolei,YAO Wei,JIANG Xuchuan
E-mail:ism_liuxl@ujn.edu.cn;stu_yaow@ujn.edu.cn;ism_Jiangxc@ujn.edu.cn
Supported by:
CLC Number:
TrendMD:
LIU Xiaolei, LU Yongqiang, YOU Qi, LIU Guohui, YAO Wei, HU Riming, YAN Jixian, CUI Yu, YANG Xiaofeng, SUN Guoxin, JIANG Xuchuan. A 3-Hydroxythalidomide-based Ratiometric Fluorescent Probe for the Detection of H2O2[J]. Chem. J. Chinese Universities, 2022, 43(6): 20220070.
Fluorophore | Emission wavelengths | Limit of detection/(μmol·L-1) | Reference |
---|---|---|---|
Naphthalimide | 475 nm/540 nm | Not available | [ |
Naphthalimide?nanopartical | 516 nm/595 nm | 0.49 | [ |
Coumarin?Naphthalimide | 480 nm/551 nm | 1.35 | [ |
Conjugated pyridine | 493 nm/562 nm | 0.33 | [ |
Naphthalimide | 465 nm/540 nm | 3.7×10?2 | [ |
Styrylnaphthalimide | 535 nm/640 nm | 0.30 | [ |
Eu?MOF | 354 nm/623 nm | 3.35×10?2 | [ |
Bis?quinolinium?vinylbenzene | 464 nm/580 nm | Not available | [ |
Hydroxyphenyl?benzothiazole | 539 nm/669 nm | 59 | [ |
Pyrene | 480 nm/600 nm | 0.117 | [ |
Fluorescein?coumarin | 440 nm/540 nm | 8.0×10?2 | [ |
Hydroxyphenyl?benzothiazole | 594 nm/666 nm | 2.31×10?2 | [ |
Coumarin?pyran | 482 nm/706 nm | 0.33 | [ |
Oxazole | 408 nm/546 nm | 1.3×10?2 | [ |
Hydroxyphenyl?benzothiazole | 500 nm/650 nm | 0.27 | [ |
Coumarin | 535 nm/640 nm | 1.0×10?2 | [ |
Naphthalimide | 410 nm/542 nm | 2.0 | [ |
3?Hydroxythalidomide | 386 nm/511 nm | 9.8—10?3 | This work |
Table 1 Previous reported ratiometric fluorescent probes for H2O2 detection
Fluorophore | Emission wavelengths | Limit of detection/(μmol·L-1) | Reference |
---|---|---|---|
Naphthalimide | 475 nm/540 nm | Not available | [ |
Naphthalimide?nanopartical | 516 nm/595 nm | 0.49 | [ |
Coumarin?Naphthalimide | 480 nm/551 nm | 1.35 | [ |
Conjugated pyridine | 493 nm/562 nm | 0.33 | [ |
Naphthalimide | 465 nm/540 nm | 3.7×10?2 | [ |
Styrylnaphthalimide | 535 nm/640 nm | 0.30 | [ |
Eu?MOF | 354 nm/623 nm | 3.35×10?2 | [ |
Bis?quinolinium?vinylbenzene | 464 nm/580 nm | Not available | [ |
Hydroxyphenyl?benzothiazole | 539 nm/669 nm | 59 | [ |
Pyrene | 480 nm/600 nm | 0.117 | [ |
Fluorescein?coumarin | 440 nm/540 nm | 8.0×10?2 | [ |
Hydroxyphenyl?benzothiazole | 594 nm/666 nm | 2.31×10?2 | [ |
Coumarin?pyran | 482 nm/706 nm | 0.33 | [ |
Oxazole | 408 nm/546 nm | 1.3×10?2 | [ |
Hydroxyphenyl?benzothiazole | 500 nm/650 nm | 0.27 | [ |
Coumarin | 535 nm/640 nm | 1.0×10?2 | [ |
Naphthalimide | 410 nm/542 nm | 2.0 | [ |
3?Hydroxythalidomide | 386 nm/511 nm | 9.8—10?3 | This work |
Detection method | Standard sample/(mol·L-1) | Laboratory effluent/(mol·L-1) | Lake water/(mol·L-1) | Cream pack/(mol·L-1) |
---|---|---|---|---|
Ratiometric fluorescent probe(This work) | 1.85×10?4 | 6.45×10?7 | 1.71×10?4 | 1.7×10?6 |
Spectrophotometer | 1.87×10?4 | Not detected | 1.61×10?4 | — b |
High?performance liquid chromatography a | 7.66×10?5 | 9.2×10?8 | 8.71×10?5 | 1.01×10?6 |
Titanium salt colorimetry c | 1.84×10?4 | Not detected | 1.67×10?4 | Not detected |
Table 2 Detection of the complex H2O2 samples
Detection method | Standard sample/(mol·L-1) | Laboratory effluent/(mol·L-1) | Lake water/(mol·L-1) | Cream pack/(mol·L-1) |
---|---|---|---|---|
Ratiometric fluorescent probe(This work) | 1.85×10?4 | 6.45×10?7 | 1.71×10?4 | 1.7×10?6 |
Spectrophotometer | 1.87×10?4 | Not detected | 1.61×10?4 | — b |
High?performance liquid chromatography a | 7.66×10?5 | 9.2×10?8 | 8.71×10?5 | 1.01×10?6 |
Titanium salt colorimetry c | 1.84×10?4 | Not detected | 1.67×10?4 | Not detected |
1 | Wen Y., Huo F., Yin C., Sens. Actuators B⁃Chem., 2019, 296, 126624 |
2 | Zhu B., Jiang H., Guo B., Shao C., Wu H., Du B., Wei Q., Sens. Actuators B⁃Chem., 2013, 186, 681—686 |
3 | Hu L., Liu J., Zhang J., Zhang H., Xu P., Chen Z., Xiao E., RSC Adv., 2019, 9(67), 39532—39535 |
4 | Yang G., Zhu T., Wang D., Liu Z., Zhang R., Han G., Tian X., Liu B., Han M. Y., Zhang Z., Chem. Commun., 2021, 57(54), 6628—6631 |
5 | Lee M. H., Kim J. S., Sessler J. L., Chem. Soc. Rev., 2015, 44(13), 4185—4191 |
6 | Yuan L., Lin W., Zheng K., He L., Huang W., Chem. Soc. Rev., 2013, 42(2), 622—661 |
7 | Tang L., Tian M., Chen H., Yan X., Zhong K., Bian Y., Dyes Pigment., 2018, 158, 482—489 |
8 | Zhu H., Fan J., Wang B., Peng X., Chem. Soc. Rev., 2015, 44(13), 4337—4366 |
9 | Xu K., He L., Yang X., Yang Y., Lin W., Analyst, 2018, 143(15), 3555—3559 |
10 | Peng J., Hou X. F., Zeng F., Wu S. Z., Biosens. Bioelectron., 2017, 94, 278—285 |
11 | Park S. H., Kwon N., Lee J. H., Yoon J., Shin I., Chem. Soc. Rev., 2020, 49(1), 143—179 |
12 | Chen X., Wang F., Hyun J. Y., Wei T., Qiang J., Ren X., Shin I., Yoon J., Chem. Soc. Rev., 2016, 45(10), 2976—3016 |
13 | Du L., Li M., Zheng S., Wang B., Tetrahedron Lett., 2008, 49(19), 3045—3048 |
14 | Li Z. Y., Li J., Du L. P., Li M. Y., Shen Y. M., Scientia Sinica Chim., 2012, 42(12), 1683—1693 |
李震宇, 李静, 杜吕佩, 李敏勇, 沈月毛. 中国科学化学, 2012, 42(12),1683—1693 | |
15 | Li B., Chen J. B., Xiong Y., Yang X., Zhao C., Sun J., Sens. Actuators B⁃Chem., 2018, 268, 475—484 |
16 | Ito T., Ando H., Suzuki T., Ogura T., Hotta K., Imamura Y., Yamaguchi Y., Handa H., Science, 2010, 327(5971), 1345—1350 |
17 | Remillard D., Buckley D. L., Paulk J., Brien G. L., Sonnett M., Seo H. S., Dastjerdi S., Wuhr M., Dhe⁃Paganon S., Armstrong S. A., Bradner J. E., Angew. Chem. Int. Ed., 2017, 56(21), 5738—5743 |
18 | Dong G., Ding Y., He S., Sheng C., J. Med. Chem., 2021, 64(15), 10606—10620 |
19 | Schreiber S. L., Cell, 2021, 184(1), 3—9 |
20 | Winter G. E., Buckley D. L., Paulk J., Roberts J. M., Souza A., Dhe⁃Paganon S., Bradner J. E., Science, 2015, 348(6241), 1376—1381 |
21 | Kampmann S. S., Skelton B. W., Yeoh G. C., Abraham L. J., Lengkeek N. A., Stubbs K. A., Heath C. H., Stewart S. G., Tetrahedron, 2015, 71(42), 8140—8149 |
22 | Weller A., Naturwissenschaften, 1955, 42(7), 175—176 |
23 | Sedgwick A. C., Wu L., Han H. H., Bull S. D., He X. P., James T. D., Sessler J. L., Tang B. Z., Tian H., Yoon J., Chem. Soc. Rev., 2018, 47(23), 8842—8880 |
24 | Liu X. L., Yang Z., Yang X. F., Cui Y., Sun G. X., Dyes Pigment., 2020, 174, 108108 |
25 | Liu X. L., Li W. T., Bai S. L., Cui Y., Sun G. X., Microchem. J., 2020, 158, 105144 |
26 | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz, J. V., Izmaylov A. F., Sonnenberg J. L., Williams⁃Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian03, Revision C02, Gaussian, Inc.,Pittsburgh, PA, 2004 |
27 | Zeng G., Zhang R., Xuan W., Wang W., Liang F. S., ACS Chem. Biol., 2015, 10(6), 1404—1410 |
28 | Srikun D., Miller E. W., Domaille D. W., Chang C. J., J. Am. Chem. Soc., 2008, 130(14), 4596—4597 |
29 | Wang C., Wang Y., Wang G., Huang C., Jia N., Anal. Chim. Acta, 2020, 1097, 230—237 |
30 | Gao C., Tian Y., Zhang R., Jing J., Zhang X., Anal. Chem., 2017, 89(23), 12945—12950 |
31 | Lee J., Yoon S. A., Chun J., Kang C., Lee M. H., Anal. Chim. Acta, 2019, 1080, 153—161 |
32 | Cui Y., Chen F., Yin X. B., Biosens. Bioelectron., 2019, 135, 208—215 |
33 | Chen Q., Cheng K., Wang W., Yang L., Xie Y., Feng L., Zhang J., Zhang H., Sun H., J. Pharm. Anal., 2020, 10(5), 490—497 |
34 | He L., Liu X., Zhang Y., Yang L., Fang Q., Geng Y., Chen W., Song X., Sens. Actuators B⁃Chem., 2018, 276, 247—253 |
35 | Jiang W. L., Wang, W. X., Liu J., Li Y., Li C. Y., Sens. Actuators B⁃Chem., 2020, 313, 128054 |
36 | Li X., Li J., Tao Y., Peng Z., Lu P., Wang Y., Sens. Actuators B⁃Chem., 2017, 247, 609—616 |
37 | Liu Y., Bai L., Li Y., Ni Y., Xin C., Zhang C., Liu J., Liu Z., Li L., Huang W., Sens. Actuators B⁃Chem., 2019, 279, 38—43 |
38 | Shen Y., Zhang X., Zhang Y., Wu Y., Zhang C., Chen Y., Jin J., Li H., Sens. Actuators B⁃Chem., 2018, 255, 42—48 |
[1] | ZHAO Huijun, WU Tong, SUN Yue, DUAN Lian, MA Yanyu. A Coumarin-based Ratiometric Fluorescent Probe for BF3 Detection in Solution and Air [J]. Chem. J. Chinese Universities, 2021, 42(8): 2422. |
[2] | XU Mengyi, HUANG Xuewen, LI Xiaojie, WEI Wei, LIU Xiaoya. Fabrication of Biosensor Based on “Beads-on-a-String” Shaped Composite Nano-assembly Modified Screen Printed Electrode [J]. Chem. J. Chinese Universities, 2021, 42(6): 1768. |
[3] | XIE Xingyu, ZHAO Yaxiang, ZHAO Lizhi, LI Rishun, WU Dihao, YE Hui, XIN Qingping, LI Hong, ZHANG Yuzhong. Colorimetric Detection Method for H2O2 Based on Two-dimensional Metal-organic Frameworks of Metalloporphyrin [J]. Chem. J. Chinese Universities, 2020, 41(8): 1776. |
[4] | WANG Ruixue, YIN Dongmei, SONG Yongxin, SHAN Guiye. Preparation of CuS/Ag2S Nanocomposite and the Peroxidase-like Properties [J]. Chem. J. Chinese Universities, 2020, 41(6): 1218. |
[5] | LIU Xinchao,ZHAO Yarong,YUAN Zhenyan,ZHOU Dan,LU Xinhuan,XIA Qinghua. Controllable Synthesis of Ti-Beta Zeolite and Efficiently Catalytic Epoxidation of Cyclohexene† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1222. |
[6] |
CHEN Yan,DONG Xuejiao,SHAN Guiye.
Preparation of Liposome@Ag/Au Nanocomposites and Their Interaction with H2 |
[7] |
LU Xinhuan,TAO Peipei,HUANG Fengfeng,ZHANG Xianggui,LIN Zhicheng,PAN Haijun,ZHANG Haifu,ZHOU Dan,XIA Qinghua.
Nano-SnO2 as Highly Efficient Catalyst for Epoxidation of Cyclic Olefins with Aqueous H2 |
[8] | WANG Hui, PEI Yanbo, HU Shaozheng, MA Wentao, SHI Shuoyu. Synthesis and “Two Channel Pathway” Photocatalytic H2O2 Production Ability of Band Gap Tunable K+ Doped Graphitic Carbon Nitride† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1503. |
[9] | CAI Zhuang,WANG Guiling,SONG Congying,YANG Xueying,HU Rong,YE Ke,ZHU Kai,CHENG Kui,YAN Jun,CAO Dianxue. Preparation of a Binder Free Electrode of NiAg Supported on Graphite Modified A4 Paper and Its Electrochemical Performance for H2O2 Reduction† [J]. Chem. J. Chinese Universities, 2018, 39(5): 1041. |
[10] | ZHONG Yong-Ke, LI Gui-Ying*, ZHU Liang-Fang, TANG Dian-Yong, HU Chang-Wei*. Direct Catalytic Hydroxylation of Several Typical Aromatic Compounds over Fe/Activated Carbon Catalyst [J]. Chem. J. Chinese Universities, 2007, 28(8): 1570. |
[11] | FENG Xia-Guang, ZHANG Min, ZHAO Hu, WANG Huai-You*. Determination of Vancomycin in Injection via Enzyme Catalysis-Fluorescence Quenching Method [J]. Chem. J. Chinese Universities, 2007, 28(7): 1270. |
[12] | ZHOU Wei, CHUN Yuan, XU Qin-Hua, WANG Cheng, DONG Jia-Lu . A Novel Liquid-solid Isomorphous Substitution Route for Preparing Zeolite Ti-β [J]. Chem. J. Chinese Universities, 2004, 25(1): 16. |
[13] | LIU Qing-Sheng, YU Jiang-Feng, YE Qiu-Shi, FU Ying-Huan, XU Ning, WU Tong-Hao . Preparation and Characterization of Nanoscales α-Fe2O3/Microporous resin Catalyst and the Application in Hydroxylation of Phenol with H2O2 to Dihydroxybenzene [J]. Chem. J. Chinese Universities, 2002, 23(2): 259. |
[14] | HAN Shu-Bo, ZHU Min, YUAN Zhuo-Bin . An Amperometric Hydrogen Peroxide Sensor Based on Supramolecular Inclusion Complex of β-CD Polymer as Immobilization Matrix [J]. Chem. J. Chinese Universities, 1999, 20(7): 1036. |
[15] | MAO Lu-Yuan, ZHU Min, HUANG Xue-Me, SHEN Han-Xi, LI Rong. Study on Immobilized Supramolecular inclusion Complex of Iron-Porphyrin as an Analogue for Peroxide Proteinase [J]. Chem. J. Chinese Universities, 1997, 18(10): 1611. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||