Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (6): 20220010.doi: 10.7503/cjcu20220010
• Review • Previous Articles Next Articles
WANG Junyang, LIU Zheng, ZHANG Qian, SUN Chunyan(), LI Hongxia(
)
Received:
2022-01-06
Online:
2022-06-10
Published:
2022-02-08
Contact:
SUN Chunyan
E-mail:sunchuny@jlu.edu.cn;hxiali@jlu.edu.cn
Supported by:
CLC Number:
TrendMD:
WANG Junyang, LIU Zheng, ZHANG Qian, SUN Chunyan, LI Hongxia. Application of DNA Silver Nanoclusters in the Fluorescence Biosensors based on Functional Nucleic Acids[J]. Chem. J. Chinese Universities, 2022, 43(6): 20220010.
No. | Characterization methods and abbreviations | Purpose |
---|---|---|
1 | Fluorescence spectrometry(FL) | Fluorescence emission |
2 | Ultraviolet?visible absorption spectrometry(UV?VIS) | Maximum absorption wavelength |
3 | Circular dichroism(CD) | Structural change |
4 | Transmission electron microscopy(TEM) | Morphology and size |
5 | Electrospray ionization mass spectrometry(ESI?MS) | Deterministic chemometrics |
6 | X?ray photoelectron spectroscopy(XPS) | Qualitative and quantitative analysis of elements |
7 | Nuclear magnetic resonance(NMR) | Qualitative analysis of composition and structure |
8 | Energy dispersive spectrometer(EDS) | Element types and contents |
Table 1 Common characterization methods for DNA-AgNCs
No. | Characterization methods and abbreviations | Purpose |
---|---|---|
1 | Fluorescence spectrometry(FL) | Fluorescence emission |
2 | Ultraviolet?visible absorption spectrometry(UV?VIS) | Maximum absorption wavelength |
3 | Circular dichroism(CD) | Structural change |
4 | Transmission electron microscopy(TEM) | Morphology and size |
5 | Electrospray ionization mass spectrometry(ESI?MS) | Deterministic chemometrics |
6 | X?ray photoelectron spectroscopy(XPS) | Qualitative and quantitative analysis of elements |
7 | Nuclear magnetic resonance(NMR) | Qualitative analysis of composition and structure |
8 | Energy dispersive spectrometer(EDS) | Element types and contents |
1 | Yuan X., Luo Z. T., Yu Y., Yao Q. F., Xie J. P., Chem. Asian. J., 2013, 8(5), 858―871 |
2 | Fang J., Zhang B., Yao Q. F., Yang Y., Xie J. P., Yan N., Coord. Chem. Rev., 2016, 322, 1―29 |
3 | Evanoff D. D., Chumanov G., ChemPhysChem, 2005, 6(7), 1221―1231 |
4 | Zheng J., Nicovich P. R., Dickson R. M., Annu. Rev. Phys. Chem., 2007, 58, 409―431 |
5 | Zhang L. B., Wang E. K., Nano Today, 2014, 9(1), 132―157 |
6 | Xu H. X., Suslick K. S., Adv. Mater., 2010, 22(10), 1078―1082 |
7 | Diez I., Ras R. H. A., Nanoscale, 2011, 3(5), 1963―1970 |
8 | Xu M. D., Gao Z. Q., Wei Q. H., Chen G. N., Tang D. P., Biosens. Bioelectron., 2016, 79, 411―415 |
9 | Petty J. T., Zheng J., Hud N. V., Dickson R. M., J. Am. Chem. Soc., 2004, 126(16), 5207―5212 |
10 | New S. Y., Lee S. T., Su X. D., Nanoscale, 2016, 8(41), 17729―17746 |
11 | Ritchie C. M., Johnsen K. R., Kiser J. R., Antoku Y., Dickson R. M., Petty J. T., J. Phys. Chem. C, 2007, 111(1), 175―181 |
12 | Weadick D. S., Liu J. W., Nanomaterials, 2015, 5(2), 804―813 |
13 | Schultz D., Gardner K., Oemrawsingh S. S. R., Markesevic N., Olsson K., Debord M., Bouwmeester D., Gwinn E., Adv. Mater., 2013, 25(20), 2797―2803 |
14 | O'Neill P. R., Gwinn E. G., Fygenson D. K., J. Phys. Chem. C, 2011, 115(49), 24061―24066 |
15 | Obliosca J. M., Babin M. C., Liu C., Liu Y. H., Chen Y. A., Batson R. A., Ganguly M., Petty J. T., Yeh H. C., ACS Nano, 2014, 8(10), 10150―10160 |
16 | Richards C. I., Choi S., Hsiang J. C., Antoku Y., Vosch T., Bongiorno A., Tzeng Y. L., Dickson R. M., J. Am. Chem. Soc., 2008, 130(15), 5038―5039 |
17 | Sengupta B., Ritchie C. M., Buckman J. G., Johnsen K. R., Goodwin P. M., Petty J. T., J. Phys. Chem. C, 2008, 112 (48), 18776―18782 |
18 | Koszinowski K., Ballweg K., Chem. Eur. J., 2010, 16(11), 3285―3290 |
19 | Yang X., Gan L. F., Han L., Wang E. K., Wang J., Angew. Chem. Int. Ed., 2013, 52(7), 2022―2026 |
20 | Wang J. Y., Du C. Y., Yu P. T., Zhang Q., Li H. X., Sun C. Y., Sensor. Actuat. B⁃Chem., 2021, 348, e130707 |
21 | O’Neill P. R., Velazquez L. R., Dunn D. G., Gwinn E. G., Fygenson D. K., J. Phys. Chem. C, 2009, 113(11), 4229―4233 |
22 | Choi S. M., Yu J. H., Patel S. A., Tzeng Y. L., Dickson R. M., Photoch. Photobio. Sci., 2011, 10(1) 109―115 |
23 | Zhou Q., Lin Y.X., Xu M. D., Gao Z. Q., Yang H. H., Tang D. P., Anal. Chem., 2016, 88(17), 8886―8892 |
24 | Huang Z. Z., Pu F., Hu D., Wang C. Y., Ren J. S., Qu X. G., Chem. Eur. J., 2011, 17(13), 3774―3780 |
25 | Ma K., Cui Q. H., Liu G. Y., Wu F., Xu S. J., Shao Y., Nanotechnology, 2011, 22(30), e305502 |
26 | Cui Q. H., Ma K., Shao Y., Xu S. J., Wu F., Liu G. Y., Teramae N., Bao H. F., Anal. Chim. Acta, 2012, 724, 86―91 |
27 | Ihara T., Ishii T., Araki N., Wilson A. W., Jyo A., J. Am. Chem. Soc., 2009, 131(11), 3826―3827 |
28 | Feng L. Y., Huang Z. Z., Ren J. S., Qu X. G., Nucleic Acids Res., 2012, 40(16), e122 |
29 | Sengupta B., Springer K., Buckman J. G., Story S. P., Abe O. H., Hasan Z. W., Prudowsky Z. D., Rudisill S. E., Degtyareva N. N., Petty J. T., J. Phys. Chem. C, 2009, 113(45), 19518―19524 |
30 | Ai J., Guo W. W., Li B. L., Li T., Li D., Wang E. K., Talanta, 2012, 88, 450―455 |
31 | Tao G. Y., Chen Y., Lin R. Y., Zhou J., Pei X. J., Liu F., Li N., Nano Res., 2018, 11(4), 2237―2247 |
32 | Latorre A., Lorca R., Zamora F., Somoza A., Chem. Comm., 2013, 49(43), 4950―4952 |
33 | Yeh H. C., Sharma J., Han J. J., Martinez J. S., Werner J. H., Nano Lett., 2010, 10(8), 3106―3110 |
34 | Yeh H. C., Sharma J., Shih I. M., Vu D. M., Martinez J. S., Werner J. H., J. Am. Chem. Soc., 2012, 134(28), 11550―11558 |
35 | Li J. J., Zhong X. Q., Zhang H. Q., Le X. C., Zhu J. J., Anal. Chem., 2012, 84(12), 5170―5174 |
36 | Guo Y. H., Zhang Y., Pei R. J., Cheng Y. L., Xie Y. F., Yu H., Yao W. R., Li H. W., Qian H., Sensor. Actuat. B⁃Chem., 2019, 281, 493―498 |
37 | Ma J. L., Yin B. C., Ye B. C., RSC Adv., 2015, 5(119), 98467―98471 |
38 | Zhang B. Z., Wei C. Y., RSC Adv., 2017, 7(89), 56289―56295 |
39 | Zhang B. Z., Wei C. Y., Talanta, 2018, 182, 125―130 |
40 | Lee J., Park J., Lee H. H., Parkc H, Kimb H. I., Kim W. J., Biosens. Bioelectron., 2015, 68, 642―647 |
41 | Zhang J., Xia Y. K., Chen M., Wu D. Z., Cai S. X., Liu M. M., He W. H., Chen J. H., Sensor. Actuat. B⁃Chem., 2016, 235, 79―85 |
42 | Li T. T., Xiao P. F., Khan A., Wang Z. L., He N. Y., Nanosci. Nanotech. Let., 2017, 9(6), 892―896 |
43 | Qin Y., Daniyal M., Wang W. M., Jian Y. Q., Yang W., Qiu Y. X., Tong C. Y., Wang W., Liu B., Sensor. Actuat. B⁃Chem., 2019, 291, 485―492 |
44 | Eun H., Kwon W. Y., Kalimuthu K, Kim Y., Lee M., Ahn J. O., Lee H., Lee S. H., Kim H. J., Park H. G., Park K. S., J. Mater. Chem. B, 2019, 7(15), 2512―2517 |
45 | Han B. Y., Wang E. K., Biosens. Bioelectron., 2011, 26(5), 2585―2589 |
46 | Zhang P., Jia C. Y., Zhao Y. N., Luo H. H., Tan X., Ma X. H., Wang Y., Microchim. Acta, 2019, 186(9), e609 |
47 | Li C. Y., Wei C. Y., Sensor. Actuat. B⁃Chem., 2017, 240, 451―458 |
48 | Huang Z. Z., Pu F., Lin Y. H., Ren J. S., Qu X. G., Chem. Comm., 2011, 47(12), 3487―3489 |
49 | Xie J. P., Zheng Y. G., Ying J. Y., Chem. Comm., 2010, 46(6), 961―963 |
50 | Morishita K., MacLean J. L., Liu B. W., Jiang H., Liu J. W., Nanoscale, 2013, 5(7), 2840―2849 |
51 | Cao H. Y., Chen Z. H., Zheng H. Z., Huang Y. M., Biosens. Bioelectron., 2014, 62, 189―195 |
52 | Zhang M., Ye B. C., Analyst, 2011, 136(24), 5139―5142 |
53 | Zhou Y., Zhou T. S., Zhang M., Shi G. Y., Analyst, 2014, 139(12), 3122―3126 |
54 | Ma J. L., Yin B. C., Wu X., Ye B. C., Anal. Chem., 2016, 88(18), 9219―9225 |
55 | Wang R. J., Yan X. L., Sun J., Wang X., Zhao X. E., Liu W., Zhu S. Y., Anal. Methods⁃UK, 2018, 10(34), 4183―4188 |
56 | Lin X. D., Hao Z., Wu H. T., Zhao M. Y. Gao X., Wang S., Liu Y. Q., Microchim. Acta, 2019, 186(9), e648 |
57 | Lan G. Y., Chen W. Y., Chang H. T., RSC. Adv., 2011, 1(5), 802―807 |
58 | Peng J., Ling J., Zhang X. Q., Bai H. P., Zheng L. Y., Cao Q. E., Ding Z. T., Spectrochim. Acta Mol. Biomol. Spectros., 2015, 137, 1250―1257 |
59 | Xie P. S., Zhan Y. J., Wu M., Guo L. H., Lin Z. Y., Qiu B., Chen G. N., Cai Z. W., J. Lumin., 2017, 186, 103―108 |
60 | Zhang L. B., Zhu J. B., Guo S. J., Li T., Li J., Wang E. K., J. Am. Chem. Soc., 2013, 135(7), 2403―2406 |
61 | Lu S. S., Wang S., Zhao J. H., Sun J., Yang X. R., Anal. Chem., 2017, 89(16), 8429―8436 |
62 | Nasirian V., Shamsipur M., Molaabasi F., Mansouri K., Sarparast M., Salim V., Barati A., Kashanian S., Sensor. Actuat. B⁃Chem., 2020, 308, e127673 |
63 | Chen C. W., Wang C. H., Wei C. M., Hsieh C. Y., Chen Y. T., Chen Y. F., Lai C. W., Liu C. L., Hsieh C. C., Chou P. T., J. Phys. Chem. C, 2010, 114, 799―802 |
64 | Ma J. L., Yin B. C., Le H. N., Ye B. C., ACS Appl. Mater. Inter., 2015, 7(23), 12856―12863 |
65 | Tao Y., Lin Y. H., Huang Z. Z., Ren J. S., Qu X. G., Analyst, 2012, 137(11), 2588―2592 |
66 | Liu X. Q., Wang F., Aizen R., Yehezkeli O., Willner I., J. Am. Chem. Soc., 2013, 135(32), 11832―11839 |
67 | Lee C. Y., Park K. S., Jung Y. K., Park H. G., Biosens. Bioelectron., 2017, 93, 293―297. |
68 | Wang W., Zhan L., Du Y. Q., Leng F., Chang Y., Gao M. X., Huang C. Z., Anal. Methods⁃UK, 2013, 5(20), 5555―5559 |
69 | Khan I. M., Zhao S., Niazi S., Mohsin A., Shoaib M., Duan N., Wu S. J., Wang Z. P., Sensor. Actuat. B⁃Chem., 2018, 277, 328―335 |
70 | Zhang X. Y., Khan I. M., Ji H., Wang Z. P., Tian H. L., Cao W. B., Mi W. Y., Polymers, 2020, 12(1), e152 |
71 | Liu X. Q., Wang F., Niazov⁃Elkan A., Guo W. W., Willner I., Nano Lett., 2013, 13(1), 309―314 |
72 | Lee J., Park J., Lee H. H., Kim H. I., Kim W. J., J. Mater. Chem. B, 2014, 2(17), 2616―2621 |
73 | Wang G. F., Zhu Y. H., Chen L., Wang L., Zhang X. J., Analyst, 2014, 139(1), 165―169 |
[1] | LU Cong, LI Zhenhua, LIU Jinlu, HUA Jia, LI Guanghua, SHI Zhan, FENG Shouhua. Synthesis, Structure and Fluorescence Detection Properties of a New Lanthanide Metal-Organic Framework Material [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220037. |
[2] | LI Qiao, ZHAO Yang, WANG Enju. Moisture Absorption Reaction and Fluorescence Property of Highly Active Michael System Based on Arylidenemalononitrile [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210690. |
[3] | TIAN Xueqin, MO Zheng, DING Xin, WU Pengyan, WANG Yu, WANG Jian. A Squaramide-containing Luminescent Metal-organic Framework as a High Selective Sensor for Histidine [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210589. |
[4] | WU Zexin, ZHU Yuanjie, WANG Hongzhong, WANG Junan, HE Ying. Methyl-modified Carbazole/Diphenyl Sulfone-based AIE-TADF Blue Emitter and Its OLEDs [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220371. |
[5] | LIU Miao, LIU Ruibo, LIU Badi, QIAN Ying. Synthesis, Two-photon Fluorescence Imaging and Photodynamic Therapy of Lysosome-targeted Indole-BODIPY Photosensitizer [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220326. |
[6] | MA Jianxin, LIU Xiaodong, XU Na, LIU Guocheng, WANG Xiuli. A Multi-functional Zn(II) Coordination Polymer with Luminescence Sensing, Amperometric Sensing, and Dye Adsorption Performance [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210585. |
[7] | WU Ji, ZHANG Hao, LUO Yuhui, GENG Wuyue, LAN Yaqian. A Microporous Cationic Ga(III)-MOF with Fluorescence Properties for Selective sensing Fe3+ Ion and Nitroaromatic Compounds [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210617. |
[8] | HAN Zongsu, YU Xiaoyong, MIN Hui, SHI Wei, CHENG Peng. A Rare Earth Metal-Organic Framework with H6TTAB Ligand [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210342. |
[9] | LI Ran, ZHANG Xudong, MU Lidan, SUN Tong, AI Ganggang, SHA Yelong, ZHANG Yuqi, WANG Jijiang. Preparation and Application of Triplethiophene Derivative Functionalized SiO2 Inverse Opal Photonic Crystal Fluorescent Films [J]. Chem. J. Chinese Universities, 2021, 42(9): 2989. |
[10] | YUAN Chunling, YAO Xiaotiao, XU Yuanjin, QIN Xiu, SHI Rui, CHENG Shiqi, WANG Yilin. Colorimetry/Ratio Fluorimetry Determination of Glucose with Bifunctional Carbon Dots [J]. Chem. J. Chinese Universities, 2021, 42(8): 2428. |
[11] | ZHOU Jieqiong, HUANG Yan, ZHANG Zhiling, PANG Daiwen, TIAN Zhiquan. Water-soluble Ag2Te Quantum Dots with Emission in the Second Near-infrared Window [J]. Chem. J. Chinese Universities, 2021, 42(6): 2072. |
[12] | WU Yangyi, CHEN Jianping, Ai Yijing, WANG Qingxiang, GAO Fei, GAO Feng. Synthesis of 2-(2-Hydroxy-3-methoxyphenyl)-C60 and Its Application for Sensing of Cauliflower Mosaic Virus 35S Promotor [J]. Chem. J. Chinese Universities, 2021, 42(6): 1754. |
[13] | XU Mengyi, HUANG Xuewen, LI Xiaojie, WEI Wei, LIU Xiaoya. Fabrication of Biosensor Based on “Beads-on-a-String” Shaped Composite Nano-assembly Modified Screen Printed Electrode [J]. Chem. J. Chinese Universities, 2021, 42(6): 1768. |
[14] | CHEN Hongda, ZHANG Hua, WANG Zhenxin. Development of Small Animals in vivo Fluorescence-photothermal Dual Mode Imaging System [J]. Chem. J. Chinese Universities, 2021, 42(3): 725. |
[15] | WANG Bodong, PAN Meichen, ZHUO Ying. Construction of Electrochemiluminescence Sensing Interface Based on Silver Nanoclusters-Silica Nanoparticles and Biomolecular Recognition [J]. Chem. J. Chinese Universities, 2021, 42(11): 3519. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||