Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (3): 20210731.doi: 10.7503/cjcu20210731
• Analytical Chemistry • Previous Articles Next Articles
XIA Dacheng1, ZHOU Rui1, TU Bo1, CAI Zhiwei1, GAO Nan1, JI Xiaoxu2, CHANG Gang1(), REN Xiaoming1(
), HE Yunbin1(
)
Received:
2021-10-19
Online:
2022-03-10
Published:
2021-12-02
Contact:
CHANG Gang
E-mail:changgang@hubu.edu.cn;renxm212@hub.edu.cn;ybhe@hubu.edu.cn
Supported by:
CLC Number:
TrendMD:
XIA Dacheng, ZHOU Rui, TU Bo, CAI Zhiwei, GAO Nan, JI Xiaoxu, CHANG Gang, REN Xiaoming, HE Yunbin. Fabrication of Ag/Au Nanowires Array as a SERS Substrate for High-sensitivity Malachite Green Detection[J]. Chem. J. Chinese Universities, 2022, 43(3): 20210731.
Fig.3 SEM images of Au NWs array(A) and Ag/Au NWs array(B), TEM image of Ag/Au NWs array(C), SEM image of Ag/Au NWs array and EDS mapping(inset) of silver on Ag/Au NWs array(D) and SERS spectra of 1×10-4 mol/L R6G on Au NWs array and Ag/Au NWs array(E)
Fig.5 Survey?scan XPS spectra of Au NWs array and Ag/Au NWs array(A), high?resolution spectra for Au4f of Au NWs array(B), Au4f of Ag/Au NWs array(C) and Ag3d of Ag/Au NWs array(D)
Fig.8 SEM images of Ag/Au NWs array prepared with AgNO3 concentration of 0.025 mmol/L(A), 0.05 mmol/L(B), 0.15 mmol/L(C) and 0.3 mmol/L(D), SERS spectra of 1×10-4 mol/L R6G on Ag/Au NWs array prepared with different concentrations of AgNO3(E) and comparison of average Raman intensity of the peak at 610.3 cm-1 on Ag/Au NWs array prepared with different concentrations of AgNO3(F)
Fig.9 SERS spectra of 1×10-4 mol/L R6G on Au NPs and Au NWs array grown at different temperatures(A), comparison of average Raman intensity of the peak at 610.3 cm-1 on Au NPs and Au NWs array(B), SERS spectra of 1×10-4 mol/L R6G on Ag/Au NPs and Ag/Au NWs array prepared with Au NWs array grown at different temperatures(C) and comparison of average Raman intensity of the peak at 610.3 cm-1 on Ag/Au NPs and Ag/Au NWs array(D)
Fig.10 SERS spectra of 1×10-4 mol/L R6G from 15 random points(A) and Raman intensity change of R6G(1×10-4 mol/L) at 610.3 cm-1 on Ag/Au NWs array in 18 d(B)
Fig.11 SERS spectra of MG solution with different concentrations of 10-8—10-4 mol/L detected on Ag/Au NWs array(A) and linear correlation of Raman intensity at 1174 cm-1vs. the logarithm of MG concentration(B)
Spiked/(mol·L-1) | Found/(mol·L-1) | RSD(%) | Recovery(%) |
---|---|---|---|
— | 0 | — | — |
10-5 | 1.14×10-5 | 7.8 | 114 |
10-7 | 9.77×10-8 | 7.6 | 97.7 |
Table 1 Results for detection of MG in real samples(n=3)
Spiked/(mol·L-1) | Found/(mol·L-1) | RSD(%) | Recovery(%) |
---|---|---|---|
— | 0 | — | — |
10-5 | 1.14×10-5 | 7.8 | 114 |
10-7 | 9.77×10-8 | 7.6 | 97.7 |
Fig.12 SERS spectra of 1×10-4 mol/L MG on newly prepared Ag/Au NWs array(a), used Ag/Au NWs array treated with NaBH4(b) and second test for 1×10-4 mol/L MG on Ag/Au NWs array treated with NaBH4(c)
1 | Zhu D., Li Q., Honeychurch K. C., Piano M., Chen G., Anal. Lett., 2015, 49(9), 1436—1451 |
2 | Mittelstaedt R. A., Mei N., Webb P. J., Shaddock J. G., Dobrovolsky V. N., McGarrity L. J., Morris S. M., Chen T., Beland F. A., Greenlees K. J., Heflich R. H., Mutat. Res., 2004, 561(1/2), 127—138 |
3 | Gavrilenko N. A., Volgina T. N., Pugachev E. V., Gavrilenko M. A., Food Chem., 2019, 274, 242—245 |
4 | Li L., Chin W. S., ACS Appl. Mater. Interfaces, 2020, 12(33), 37538—37548 |
5 | Zhang L., Zhang Y., Tang Y., Li X., Zhang X., Li C., Xu S., Int. J. Environ. Anal. Chem., 2018, 98(3), 215—228 |
6 | Halme K., Lindfors E., Peltonen K., J. Chromatogr. B, 2007, 845(1), 74—79 |
7 | Gui W., Wang H., Liu Y., Ma Q., Sens. Actuators B, 2018, 266, 685—691 |
8 | Maxwell E. J., Tong W. G., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2016, 1020, 29—35 |
9 | Zhang Y., Lai K., Zhou J., Wang X., Rasco B. A., Y. Huang, J. Raman Spectrosc., 2012, 43(9), 1208—1213 |
10 | Kumar P., Khosla R., Soni M., Deva D., Sharma S. K., Sens. Actuators, B, 2017, 246, 477—486 |
11 | Wang R., Zhang L., Zou S., Zhang H., Microchem. J., 2019, 150, 104127 |
12 | Fu W. L., Zhen S. J., Huang C. Z., Analyst, 2013, 138(10), 3075—3081 |
13 | Hu B., Sun D. W., Pu H., Wei Q., Talanta, 2020, 218, 121188 |
14 | Dou X., Zhao L., Li X., Qin L., Han S., Kang S. Z., Appl. Surf. Sci., 2020, 509, 145331 |
15 | Rao V. K., Radhakrishnan T. P., ACS Appl. Mater. Interfaces, 2015, 7(23), 12767—12773 |
16 | Zhen S. J., Fu W. L., Chen B. B., Zhan L., Zou H. Y., Gao M. X., Huang C. Z., RSC Adv., 2016, 6(96), 93645—93648 |
17 | Sinha G., Depero L. E., Alessandri I., ACS Appl. Mater. Interfaces, 2011, 3(7), 2557—2563 |
18 | Chen M., Phang I. Y., Lee M. R., Yang J. K., Ling X. Y., Langmuir, 2013, 29(23), 7061—7069 |
19 | Ye X., Zheng C., Chen J., Gao Y., Murray C. B., Nano Lett., 2013, 13(2), 765—771 |
20 | Huang J. A., Zhao Y. Q., Zhang X. J., He L. F., Wong T. L., Chui Y. S., Zhang W. J., Lee S. T., Nano Lett., 2013, 13(11), 5039—5045 |
21 | Wang X. T., Shi W. S., G. W. She, Mu L. X., Lee S. T., Appl. Phys. Lett., 2010, 96(5), 9932 |
22 | Chen K., Zhang X., MacFarlane D. R., Chem Commun(Camb), 2017, 53(56), 7949—7952 |
23 | Gao J., Wu X., Li Q., Du S., Huang F., Liang L., Zhang H., Zhuge F., Cao H., Song Y., Adv. Mater., 2017, 29(16), 1605324 |
24 | Li X., Lin X., Zhao X., Wang H., Liu Y., Lin S., Wang L., Cong S., Appl. Surf. Sci., 2020, 518, 146217 |
25 | Polte J., Tuaev X., Wuithschick M., Fischer A., Thuenemann A. F., Rademann K., Kraehnert R., Emmerling F., ACS Nano, 2012, 6(7), 5791—5802 |
26 | Li Y., Shi Q., Zhang P., Xiahou Y., Li S., Wang D., Xia H., J. Mater. Chem. C, 2016, 4(27), 6649—6656 |
27 | Ni I. C., Yang S. C., Jiang C. W., Luo C. S., Kuo W., Lin K. J., Tzeng S. D., J. Phys. Chem. C, 2012, 116(14), 8095—8101 |
28 | Hsu C. W., Su F. C., Peng P. Y., Young H. T., Liao S., Wang G. J., Sens. Actuators, B, 2016, 230, 559—565 |
29 | Wang Y., He J., Yu S., Chen H., Small, 2017, 13(40), 1702121 |
30 | He J., Wang Y., Feng Y., Qi X., Zeng Z., Liu Q., Teo W. S., Gan C. L., Zhang H., Chen H., ACS Nano, 2013, 7(3), 2733—2740 |
31 | Zhai Q., Wang Y., Gong S., Ling Y., Yap L. W., Liu Y., Wang J., Simon G. P., Cheng W., Anal. Chem., 2018, 90(22), 13498—13505 |
32 | Wang Y., He J., Mu X., Wang D., Zhang B., Shen Y., Lin M., Kubel C., Huang Y., Chen H., ACS Nano, 2017, 11(6), 5538—5546 |
33 | La Porta A., Grzelczak M., Liz⁃Marzan L. M., ChemistryOpen, 2014, 3(4), 146—151 |
34 | Villarreal E., Li G. G., Zhang Q., Fu X., Wang H., Nano Lett., 2017, 17(7), 4443—4452 |
35 | Zhou Z., Bai X., Li P., Wang C., Guo M., Zhang Y., Ding P., Chen S., Wu Y., Wang Q., Chin. Chem. Lett., 2021, 32(4), 1497—1501 |
36 | Huang J. A., Zhang Y. L., Zhao Y., Zhang X. L., Sun M. L., Zhang W., Nanoscale, 2016, 8(22), 11487—11493 |
37 | Alqudami A., Annapoorni S., Govind, Shivaprasad S. M., J. Nanopart. Res., 2007, 10(6), 1027—1036 |
38 | Zhang H., Wang G., Chen D., Lv X., Li J., Chem. Mater., 2008, 20(20), 6543—6549 |
39 | Jia Y., Zhang L., Song L., Dai L., Lu X., Huang Y., Zhang J., Guo Z., Chen T., Langmuir, 2017, 33(46), 13376—13383 |
40 | Ansar S. M., Ameer F. S., Hu W., Zou S., Pittman Jr. C. U., Zhang D., Nano Lett., 2013, 13(3), 1226—1229 |
[1] | YUAN Meng, ZHAO Yingjie, WU Yuchen, JIANG Lei. Assembly of Perovskite Arrays and Multifunctional Detector Applications [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220448. |
[2] | JIANG Shan, SHEN Qianqian, LI Qi, JIA Husheng, XUE Jinbo. Pd-loaded Defective TiO2 Nanotube Arrays for Enhanced Photocatalytic Hydrogen Production Performance [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220206. |
[3] | WANG Wei, ZOU Bingchen, HOU Jie, ZHOU Wanli, LUO Jianping, WANG Kangli, JIANG Kai. In⁃situ Analysis of Interfacial Reaction Process Inside Li-Ga Liquid Metal Battery [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220261. |
[4] | ZHAO Lingyun, HUANG Hanxiong, LUO Duyu, SU Fengchun. Effect of Flexibility of Composites on Performances of Sensors with Micro-structured Inverted Pyramid Arrays [J]. Chem. J. Chinese Universities, 2021, 42(9): 2953. |
[5] | XIE Fan, CHEN Shanshan, ZHUO Longhai, LU Zhaoqing, GAO Kun, DAI Qiyang. Fabrication of Poly(p-xylene) Nanofiber Arrays by CVD Liquid Crystal Template Method and Their Degradability [J]. Chem. J. Chinese Universities, 2021, 42(8): 2643. |
[6] | CHEN Shaoyun, ZHANG Xingying, LIU Ben, TIAN Du, LI Qi, CHEN Fang, HU Chenglong, CHEN Jian. Controllable Growth of Silver Nanoparticles on TiO2 Tetragonal Prism Nanarrays and Its SERS Effect [J]. Chem. J. Chinese Universities, 2021, 42(8): 2381. |
[7] | WU Yaqiang, LIU Siming, JIN Shunjin, YAN Yongqing, WANG Zhao, CHEN Lihua, SU Baolian. Synthesis of Zn-Doped NiCoP Catalyst with Porous Double-layer Nanoarray Structure and Its Electrocatalytic Properties for Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2021, 42(8): 2483. |
[8] | SUN Hao, GONG Jie, YANG Yan, WANG Xinqing, CHEN Huidong. Synthesis of Three-dimensional Ordered In2O3 Nanowire Arrays and the Effect of Nanostructure Order on Gas Sensitivity [J]. Chem. J. Chinese Universities, 2021, 42(6): 1730. |
[9] | LI Xiaoqian, ZHANG Hua, LU Haijian, LIU Chang, LIU Qinglong, MA Xiayu, FANG Yuanping, LIANG Dapeng. Mechanism of Photocatalytic Degradation of Rhodamine B by TiO2 Nanowire Array with Internal Extraction Electrospray Ionization Mass Spectrometry [J]. Chem. J. Chinese Universities, 2020, 41(9): 2003. |
[10] | OUYANG Mi, CHEN Lu, HU Xuming, LI Yuwen, DAI Dacheng, TU Yuanbo, BAI Ru, LÜ Xiaojing, ZHANG Cheng. Preparation and Electrochromic Properties of TiO2-PTPAT Nano Core/Shell Composite Films [J]. Chem. J. Chinese Universities, 2020, 41(12): 2796. |
[11] | WANG Wu, LAI Hua, CHENG Zhongjun, LIU Yuyan. Reversible Regulation of Droplet Directional/anti-directional Rolling on Superhydrophobic Shape Memory Microarray Surface [J]. Chem. J. Chinese Universities, 2020, 41(11): 2538. |
[12] | LIU Ben,ZHANG Xingying,CHEN Shaoyun,HU Chenglong. Preparation and Electrochemical Energy Storage Performance of One Dimensional Orderly Polyaniline Nanowires Array† [J]. Chem. J. Chinese Universities, 2019, 40(3): 498. |
[13] | QIAN Ming,XU Zhimin,LIU Weiwei,HAN Bing. Preparation and Characterization of Pyrrole-(3,4-ethylenedioxythiophene) Copolymer Ordered Nanoarray Film† [J]. Chem. J. Chinese Universities, 2019, 40(3): 612. |
[14] | HAN Donglai,LI Boxun,YANG Shuo,YAN Yongsheng,YANG Lili,LIU Yang,LI Chunxiang. Facile Synthesis of Fe3O4@Au Core-shell Nanocomposites as an SERS Substrate for the Detection of Thiram [J]. Chem. J. Chinese Universities, 2019, 40(10): 2067. |
[15] | DING Lingyun, JU Yuanlai, SUN Wei, CHEN Ji. Preparation of Functional Patterned Protein Arrays via the Combination of Inverse Emulsion and Breath Figure Method† [J]. Chem. J. Chinese Universities, 2018, 39(6): 1311. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||