Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (11): 20220448.doi: 10.7503/cjcu20220448
• Review • Previous Articles Next Articles
YUAN Meng1,2, ZHAO Yingjie3(), WU Yuchen1(), JIANG Lei1
Received:
2022-06-28
Online:
2022-11-10
Published:
2022-08-30
Contact:
ZHAO Yingjie,WU Yuchen
E-mail:zhaoyingjie5@zzu.edu.cn;wuyuchen@iccas.ac.cn
Supported by:
CLC Number:
TrendMD:
YUAN Meng, ZHAO Yingjie, WU Yuchen, JIANG Lei. Assembly of Perovskite Arrays and Multifunctional Detector Applications[J]. Chem. J. Chinese Universities, 2022, 43(11): 20220448.
Year | Material | R/(A·W?1) | 10?12D*/Jones | Polarizatin ratio, gres | LDR/dB | tr/ms | td/ms | Feature | Ref. |
---|---|---|---|---|---|---|---|---|---|
2019 | CsPbI3 | 1294 | 260 | — | — | 0.85 | 0.78 | Stable, highly sensitive | [ |
2020 | FAPbI3 | 5282 | 145 | — | — | 0.0293 | 0.0311 | Air?stable, ultrasensitive | [ |
2018 | MAPbBr3-x Cl x MAPbI3-y Br y | 3160 | — | — | — | — | — | Bandgap engineering | [ |
2017 | MAPbI3-x Br x | 12500 | 0.173 | — | 150 | — | — | High?, ultrahigh?responsivity | [ |
2016 | MAPbI3 | 13.57 | 5.25 | — | 114 | — | — | Flexible | [ |
2018 | (BA)2(MA)3Pb4I13 | 15000 | 7000 | — | — | 0.0276 | 0.0245 | Ultrasensitive | [ |
2020 | (ThMA)2(MA)2Pb3I10 | 11000 | 9100 | — | 157 | 0.0362 | 0.0315 | Ultrasensitive | [ |
2022 | (MTEA)2(MA)2Pb3I10 | 7300 | 3900 | — | 141 | 0.04 | 0.0522 | Strongly Interacted | [ |
2020 | Cs2AgBiBr6 | 1625 | — | — | — | 0.04 | 0.28 | Non?toxic | [ |
2017 | CsPbBr3 | 1377 | — | 2.6 | — | 0.0215 | 0.0234 | Polarization?sensitive | [ |
2021 | (R?α?PEA)2PbI4 | 47.1 | 12.4 | 1.6/0.15 | — | 0.267 | 0.258 | Stokes | [ |
2021 | (R?C5H14N) PbI3 | 0.026 | 0.22 | 0.23 | — | 19.0 | 19.2 | Circularly polarized | [ |
2021 | (R?β?MPA)4AgBiI8 | 0.052 | 0.39 | 0.19 | — | 11.5 | 15.6 | Lead?free | [ |
2021 | (R?MBA)2PbI4 | 0.136 | 0.039 | 1.46 | — | 267 | 270 | Full?Stokes polarimeter | [ |
Table 1 Optoelectronic performances of 1D nanowire perovskites-based photodetectors
Year | Material | R/(A·W?1) | 10?12D*/Jones | Polarizatin ratio, gres | LDR/dB | tr/ms | td/ms | Feature | Ref. |
---|---|---|---|---|---|---|---|---|---|
2019 | CsPbI3 | 1294 | 260 | — | — | 0.85 | 0.78 | Stable, highly sensitive | [ |
2020 | FAPbI3 | 5282 | 145 | — | — | 0.0293 | 0.0311 | Air?stable, ultrasensitive | [ |
2018 | MAPbBr3-x Cl x MAPbI3-y Br y | 3160 | — | — | — | — | — | Bandgap engineering | [ |
2017 | MAPbI3-x Br x | 12500 | 0.173 | — | 150 | — | — | High?, ultrahigh?responsivity | [ |
2016 | MAPbI3 | 13.57 | 5.25 | — | 114 | — | — | Flexible | [ |
2018 | (BA)2(MA)3Pb4I13 | 15000 | 7000 | — | — | 0.0276 | 0.0245 | Ultrasensitive | [ |
2020 | (ThMA)2(MA)2Pb3I10 | 11000 | 9100 | — | 157 | 0.0362 | 0.0315 | Ultrasensitive | [ |
2022 | (MTEA)2(MA)2Pb3I10 | 7300 | 3900 | — | 141 | 0.04 | 0.0522 | Strongly Interacted | [ |
2020 | Cs2AgBiBr6 | 1625 | — | — | — | 0.04 | 0.28 | Non?toxic | [ |
2017 | CsPbBr3 | 1377 | — | 2.6 | — | 0.0215 | 0.0234 | Polarization?sensitive | [ |
2021 | (R?α?PEA)2PbI4 | 47.1 | 12.4 | 1.6/0.15 | — | 0.267 | 0.258 | Stokes | [ |
2021 | (R?C5H14N) PbI3 | 0.026 | 0.22 | 0.23 | — | 19.0 | 19.2 | Circularly polarized | [ |
2021 | (R?β?MPA)4AgBiI8 | 0.052 | 0.39 | 0.19 | — | 11.5 | 15.6 | Lead?free | [ |
2021 | (R?MBA)2PbI4 | 0.136 | 0.039 | 1.46 | — | 267 | 270 | Full?Stokes polarimeter | [ |
1 | Donati S., Meas. Sci. Technol., 2001, 12(5), 653 |
2 | Konstantatos G., Sargent E. H., Nat. Nanotechnol., 2010, 5(6), 391—400 |
3 | Baeg K. J., Binda M., Natali D., Caironi M., Noh Y. Y., Adv. Mater., 2013, 25(31), 4267—4295 |
4 | Koppens F. H. L., Mueller T., Avouris P., Ferrari A. C., Vitiello M. S., Polini M., Nat. Nanotechnol., 2014, 9(10), 780—793 |
5 | Jansen⁃van Vuuren R. D., Armin A., Pandey A. K., Burn P. L., Meredith P., Adv. Mater., 2016, 28(24), 4766—4802 |
6 | García de Arquer F. P., Armin A., Meredith P., Sargent E. H., Nat. Rev. Mater., 2017, 2(3), 16100 |
7 | Konstantatos G., Clifford J., Levina L., Sargent E. H., Nat. Photonics, 2007, 1(9), 531—534 |
8 | Gong X., Tong M., Xia Y., Cai W., Moon J. S., Cao Y., Yu G., Shieh C. L., Nilsson B., Heeger A. J., Science, 2009, 325(5948), 1665—1667 |
9 | Yao Y., Liang Y., Shrotriya V., Xiao S., Yu L., Yang Y., Adv. Mater., 2007, 19(22), 3979—3983 |
10 | Zhou X., Yang D., Ma D., Adv. Opt. Mater., 2015, 3(11), 1570—1576 |
11 | Konstantatos G., Howard I., Fischer A., Hoogland S., Clifford J., Klem E., Levina L., Sargent E. H., Nature, 2006, 442(7099), 180—183 |
12 | Jin Y., Wang J., Sun B., Blakesley J. C., Greenham N. C., Nano Lett., 2008, 8(6), 1649—1653 |
13 | Sukhovatkin V., Hinds S., Brzozowski L., Sargent E. H., Science, 2009, 324(5934), 1542—1544 |
14 | Chen H. Y., Lo M. K. F., Yang G., Monbouquette H. G., Yang Y., Nat. Nanotechnol., 2008, 3(9), 543—547 |
15 | Arnold M. S., Zimmerman J. D., Renshaw C. K., Xu X., Lunt R. R., Austin C. M., Forrest S. R., Nano Lett., 2009, 9(9), 3354—3358 |
16 | Guo F., Yang B., Yuan Y., Xiao Z., Dong Q., Bi Y., Huang J., Nat. Nanotechnol., 2012, 7(12), 798—802 |
17 | Dou L., Yang Y., You J., Hong Z., Chang W. H., Li G., Yang Y., Nat. Commun., 2014, 5(1), 5404 |
18 | Saidaminov M. I., Adinolfi V., Comin R., Abdelhady A. L., Peng W., Dursun I., Yuan M., Hoogland S., Sargent E. H., Bakr O. M., Nat. Commun., 2015, 6(1), 8724 |
19 | Li F., Ma C., Wang H., Hu W., Yu W., Sheikh A. D., Wu T., Nat. Commun., 2015, 6(1), 8238 |
20 | Arai R., Yoshizawa⁃Fujita M., Takeoka Y., Rikukawa M., ACS Omega, 2017, 2(5), 2333—2336 |
21 | Zhou C., Tian Y., Wang M., Rose A., Besara T., Doyle N. K., Yuan Z., Wang J. C., Clark R., Hu Y., Siegrist T., Lin S., Ma B., Angew. Chem. Int. Ed., 2017, 56(31), 9018—9022 |
22 | Ahmed G. H., Yin J., Bose R., Sinatra L., Alarousu E., Yengel E., AlYami N. M., Saidaminov M. I., Zhang Y., Hedhili M. N., Bakr O. M., Brédas J. L., Mohammed O. F., Chem. Mater., 2017, 29(10), 4393—4400 |
23 | Cortecchia D., Dewi H. A., Yin J., Bruno A., Chen S., Baikie T., Boix P. P., Grätzel M., Mhaisalkar S., Soci C., Mathews N., Inorg. Chem., 2016, 55(3), 1044—1052 |
24 | Zhou C., Lin H., He Q., Xu L., Worku M., Chaaban M., Lee S., Shi X., Du M. H., Ma B., Mater. Sci. Eng. R Rep., 2019, 137, 38—65 |
25 | Eperon G. E., Stranks S. D., Menelaou C., Johnston M. B., Herz L. M., Snaith H. J., Energy Environ. Sci., 2014, 7(3), 982—988 |
26 | Bhalla A. S., Guo R., Roy R., Mater. Res. Innov., 2000, 4(1), 3—26 |
27 | Fang Y., Dong Q., Shao Y., Yuan Y., Huang J., Nat. Photonics, 2015, 9(10), 679—686 |
28 | Wang G., Li D., Cheng H. C., Li Y., Chen C. Y., Yin A., Zhao Z., Lin Z., Wu H., He Q., Ding M., Liu Y., Huang Y., Duan X., Sci. Adv., 2015, 1(9), e1500613 |
29 | Protesescu L., Yakunin S., Bodnarchuk M. I., Krieg F., Caputo R., Hendon C. H., Yang R. X., Walsh A., Kovalenko M. V., Nano Lett., 2015, 15(6), 3692—3696 |
30 | Zhang D., Yang Y., Bekenstein Y., Yu Y., Gibson N. A., Wong A. B., Eaton S. W., Kornienko N., Kong Q., Lai M., Alivisatos A. P., Leone S. R., Yang P., J. Am. Chem. Soc., 2016, 138(23), 7236—7239 |
31 | Pan A., He B., Fan X., Liu Z., Urban J. J., Alivisatos A. P., He L., Liu Y., ACS Nano, 2016, 10(8), 7943—7954 |
32 | Zhao Y., Xu X., You X., Sci. Rep., 2016, 6(1), 35931 |
33 | Jellicoe T. C., Richter J. M., Glass H. F. J., Tabachnyk M., Brady R., Dutton S. E., Rao A., Friend R. H., Credgington D., Greenham N. C., Böhm M. L., J. Am. Chem. Soc., 2016, 138(9), 2941—2944 |
34 | Fu Y., Zhu H., Stoumpos C. C., Ding Q., Wang J., Kanatzidis M. G., Zhu X., Jin S., ACS Nano, 2016, 10(8), 7963—7972 |
35 | Wang Y., Sun X., Shivanna R., Yang Y., Chen Z., Guo Y., Wang G. C., Wertz E., Deschler F., Cai Z., Zhou H., Lu T. M., Shi J., Nano Lett., 2016, 16(12), 7974—7981 |
36 | Chen J., Fu Y., Samad L., Dang L., Zhao Y., Shen S., Guo L., Jin S., Nano Lett., 2017, 17(1), 460—466 |
37 | Zhou H., Yuan S., Wang X., Xu T., Wang X., Li H., Zheng W., Fan P., Li Y., Sun L., Pan A., ACS Nano, 2017, 11(2), 1189—1195 |
38 | Fu Y., Zhu H., Schrader A. W., Liang D., Ding Q., Joshi P., Hwang L., Zhu X. Y., Jin S., Nano Lett., 2016, 16(2), 1000—1008 |
39 | Chen Z., Guo Y., Wertz E., Shi J., Adv. Mater., 2019, 31(1), 1803514 |
40 | Shi E., Gao Y., Finkenauer B. P., Akriti, Coffey A. H., Dou L., Chem. Soc. Rev., 2018, 47(16), 6046—6072 |
41 | Zhang F., Lu H., Tong J., Berry J. J., Beard M. C., Zhu K., Energy Environ. Sci., 2020, 13(4), 1154—1186 |
42 | Ju M. G., Dai J., Ma L., Zhou Y., Zeng X. C., J. Am. Chem. Soc., 2018, 140(33), 10456—10463 |
43 | Zhao H., Sun R., Wang Z., Fu K., Hu X., Zhang Y., Adv. Funct. Mater., 2019, 29(30), 1902262 |
44 | Yang Z., Lu J., ZhuGe M., Cheng Y., Hu J., Li F., Qiao S., Zhang Y., Hu G., Yang Q., Peng D., Liu K., Pan C., Adv. Mater., 2019, 31(18), e1900647 |
45 | Han X., Wu W., Chen H., Peng D., Qiu L., Yan P., Pan C., Adv. Funct. Mater., 2020, 31(3), 2005230 |
46 | Liu J., Shabbir B., Wang C., Wan T., Ou Q., Yu P., Tadich A., Jiao X., Chu D., Qi D., Li D., Kan R., Huang Y., Dong Y., Jasieniak J., Zhang Y., Bao Q., Adv. Mater., 2019, 31(30), 1901644 |
47 | Karunakaran S. K., Arumugam G. M., Yang W., Ge S., Khan S. N., Lin X., Yang G., J. Mater. Chem. A, 2019, 7(23), 13873—13902 |
48 | Piner R. D., Zhu J., Xu F., Hong S., Mirkin C. A., Science, 1999, 283(5402), 661—663 |
49 | Wu W., Wang X., Han X., Yang Z., Gao G., Zhang Y., Hu J., Tan Y., Pan A., Pan C., Adv. Mater., 2019, 31(3), e1805913 |
50 | Li C., Li J. X., Li C. Y., Wang J., Tong X. W., Zhang Z. X., Yin Z. P., Wu D., Luo L. B., Adv. Opt. Mater., 2021, 9(15), 2100371 |
51 | Briseno A. L., Mannsfeld S. C. B., Ling M. M., Liu S., Tseng R. J., Reese C., Roberts M. E., Yang Y., Wudl F., Bao Z., Nature, 2006, 444(7121), 913—917 |
52 | Giri G., Verploegen E., Mannsfeld S. C. B., Atahan⁃Evrenk S., Kim D. H., Lee S. Y., Becerril H. A., Aspuru⁃Guzik A., Toney M. F., Bao Z., Nature, 2011, 480(7378), 504—508 |
53 | Zhao Y., Qiu Y., Gao H., Feng J., Chen G., Jiang L., Wu Y., Adv. Mater., 2020, 32(9), e1905298 |
54 | Ma C., Shi Y., Hu W., Chiu M. H., Liu Z., Bera A., Li F., Wang H., Li L. J., Wu T., Adv. Mater., 2016, 28(19), 3683—3689 |
55 | Lee Y., Kwon J., Hwang E., Ra C. H., Yoo W. J., Ahn J. H., Park J. H., Cho J. H., Adv. Mater., 2015, 27(1), 41—46 |
56 | Spina M., Lehmann M., Náfrádi B., Bernard L., Bonvin E., Gaál R., Magrez A., Forró L., Horváth E., Small, 2015, 11(37), 4824—4828 |
57 | Wang H., Kim D. H., Chem. Soc. Rev., 2017, 46(17), 5204—5236 |
58 | Liu J., Xue Y., Wang Z., Xu Z. Q., Zheng C., Weber B., Song J., Wang Y., Lu Y., Zhang Y., Bao Q., ACS Nano, 2016, 10(3), 3536—3542 |
59 | Cheng H. C., Wang G., Li D., He Q., Yin A., Liu Y., Wu H., Ding M., Huang Y., Duan X., Nano Lett., 2016, 16(1), 367—373 |
60 | Lu J., Carvalho A., Liu H., Lim S. X., Castro Neto A. H., Sow C. H., Angew. Chem. Int. Ed., 2016, 55(39), 11945—11949 |
61 | Kang D. H., Pae S. R., Shim J., Yoo G., Jeon J., Leem J. W., Yu J. S., Lee S., Shin B., Park J. H., Adv. Mater., 2016, 28(35), 7799—7806 |
62 | Xie C., Yan F., ACS Appl. Mater. Interfaces, 2017, 9(2), 1569—1576 |
63 | Chen G., Feng J., Gao H., Zhao Y., Pi Y., Jiang X., Wu Y., Jiang L., Adv. Funct. Mater., 2019, 29(13), 1808741 |
64 | Chen G., Qiu Y., Gao H., Zhao Y., Feng J., Jiang L., Wu Y., Adv. Funct. Mater., 2020, 30(14), 1908894 |
65 | Swarnkar A., Marshall A. R., Sanehira E. M., Chernomordik B. D., Moore D. T., Christians J. A., Chakrabarti T., Luther J. M., Science, 2016, 354(6308), 92—95 |
66 | Luo P., Xia W., Zhou S., Sun L., Cheng J., Xu C., Lu Y., J. Phys. Chem. Lett., 2016, 7(18), 3603—3608 |
67 | Beal R. E., Slotcavage D. J., Leijtens T., Bowring A. R., Belisle R. A., Nguyen W. H., Burkhard G. F., Hoke E. T., McGehee M. D., J. Phys. Chem. Lett., 2016, 7(5), 746—751 |
68 | Chen T., Foley B. J., Park C., Brown C. M., Harriger L. W., Lee J., Ruff J., Yoon M., Choi J. J., Lee S. H., Science Advances, 2016, 2(10), e1601650 |
69 | Fu Y., Wu T., Wang J., Zhai J., Shearer M. J., Zhao Y., Hamers R. J., Kan E., Deng K., Zhu X. Y., Jin S., Nano Lett., 2017, 17(7), 4405—4414 |
70 | Lee J. W., Dai Z., Han T. H., Choi C., Chang S. Y., Lee S. J., De Marco N., Zhao H., Sun P., Huang Y., Yang Y., Nat. Commun., 2018, 9(1), 3021 |
71 | Ning C. Z., Dou L., Yang P., Nat. Rev. Mater., 2017, 2(12), 17070 |
72 | Gao H., Feng J., Pi Y., Zhou Z., Zhang B., Wu Y., Wang X., Jiang X., Jiang L., Adv. Funct. Mater., 2018, 28(46), 1804349 |
73 | Deng W., Huang L., Xu X., Zhang X., Jin X., Lee S. T., Jie J., Nano Lett., 2017, 17(4), 2482—2489 |
74 | Deng W., Zhang X., Huang L., Xu X., Wang L., Wang J., Shang Q., Lee S. T., Jie J., Adv. Mater., 2016, 28(11), 2201—2208 |
75 | Mao L., Stoumpos C. C., Kanatzidis M. G., J. Am. Chem. Soc., 2019, 141(3), 1171—1190 |
76 | Chen C., Gao L., Gao W., Ge C., Du X., Li Z., Yang Y., Niu G., Tang J., Nat. Commun., 2019, 10(1), 1927 |
77 | Long G., Jiang C., Sabatini R., Yang Z., Wei M., Quan L. N., Liang Q., Rasmita A., Askerka M., Walters G., Gong X., Xing J., Wen X., Quintero⁃Bermudez R., Yuan H., Xing G., Wang X. R., Song D., Voznyy O., Zhang M., Hoogland S., Gao W., Xiong Q., Sargent E. H., Nat. Photonics, 2018, 12(9), 528—533 |
78 | Gao Y., Shi E., Deng S., Shiring S. B., Snaider J. M., Liang C., Yuan B., Song R., Janke S. M., Liebman⁃Pelaez A., Yoo P., Zeller M., Boudouris B. W., Liao P., Zhu C., Blum V., Yu Y., Savoie B. M., Huang L., Dou L., Nat. Chem., 2019, 11(12), 1151—1157 |
79 | Ema K., Inomata M., Kato Y., Kunugita H., Era M., Phys. Rev. Lett., 2008, 100(25), 257401 |
80 | Li L., Shang X., Wang S., Dong N., Ji C., Chen X., Zhao S., Wang J., Sun Z., Hong M., Luo J., J. Am. Chem. Soc., 2018, 140(22), 6806—6809 |
81 | Huang P. J., Taniguchi K., Miyasaka H., J. Am. Chem. Soc., 2019, 141(37), 14520—14523 |
82 | Yuan C., Li X., Semin S., Feng Y., Rasing T., Xu J., Nano Lett., 2018, 18(9), 5411—5417 |
83 | Jana M. K., Song R., Liu H., Khanal D. R., Janke S. M., Zhao R., Liu C., Valy Vardeny Z., Blum V., Mitzi D. B., Nat. Commun., 2020, 11(1), 4699 |
84 | Tsai H., Nie W., Blancon J. C., Stoumpos C. C., Asadpour R., Harutyunyan B., Neukirch A. J., Verduzco R., Crochet J. J., Tretiak S., Pedesseau L., Even J., Alam M. A., Gupta G., Lou J., Ajayan P. M., Bedzyk M. J., Kanatzidis M. G., Nature, 2016, 536(7616), 312—316 |
85 | Tsai H., Nie W., Blancon J. C., Stoumpos C. C., Soe C. M. M., Yoo J., Crochet J., Tretiak S., Even J., Sadhanala A., Azzellino G., Brenes R., Ajayan P. M., Bulovic V., Stranks S. D., Friend R. H., Kanatzidis M. G., Mohite A. D., Adv. Mater., 2018, 30(6), 1704217 |
86 | Liu Y., Zhang Y., Yang Z., Ye H., Feng J., Xu Z., Zhang X., Munir R., Liu J., Zuo P., Li Q., Hu M., Meng L., Wang K., Smilgies D. M., Zhao G., Xu H., Yang Z., Amassian A., Li J., Zhao K., Liu S. F., Nat. Commun., 2018, 9(1), 5302 |
87 | Feng J., Gong C., Gao H., Wen W., Gong Y., Jiang X., Zhang B., Wu Y., Wu Y., Fu H., Jiang L., Zhang X., Nat. Electron, 2018, 1(7), 404—410 |
88 | Yuan M., Zhao Y., Feng J., Gao H., Zhao J., Jiang L., Wu Y., ACS Appl. Mater. Interfaces, 2022, 14(1), 1601—1608 |
89 | Pi Y., Zhao J., Zhao Y., Feng J., Zhang C., Gao H., Wu Y., Jiang L., Front. Chem., 2020, 8, 632 |
90 | He X., Gao W., Xie L., Li B., Zhang Q., Lei S., Robinson J. M., Hároz E. H., Doorn S. K., Wang W., Vajtai R., Ajayan P. M., Adams W. W., Hauge R. H., Kono J., Nat. Nanotechnol., 2016, 11(7), 633—638 |
91 | Wang J., Gudiksen M. S., Duan X., Cui Y., Lieber C. M., Science, 2001, 293 (5534), 1455—1457 |
92 | Fan Z. Y., Chang P. C., Lu J. G., Walter E. C., Penner R. M., Lin C. H., Lee H. P., Appl. Phys. Lett., 2004, 85(25), 6128—6130 |
93 | Feng J., Yan X., Liu Y., Gao H., Wu Y., Su B., Jiang L., Adv. Mater., 2017, 29 (16), 1605993 |
94 | Zhao Y., Qiu Y., Feng J., Zhao J., Chen G., Gao H., Zhao Y., Jiang L., Wu Y., J. Am. Chem. Soc., 2021, 143(22), 8437—8445 |
95 | Zhao Y., Li X., Feng J., Zhao J., Guo Y., Yuan M., Chen G., Gao H., Jiang L., Wu Y., Giant, 2022, 9, 100086 |
96 | Huang P. J., Taniguchi K., Miyasaka H., J. Am. Chem. Soc., 2019, 141(37), 14520—14523 |
97 | Di Nuzzo D., Cui L., Greenfield J. L., Zhao B., Friend R. H., Meskers S. C. J., ACS Nano, 2020, 14(6), 7610—7616 |
98 | Wang L., Xue Y., Cui M., Huang Y., Xu H., Qin C., Yang J., Dai H., Yuan M., Angew. Chem. Int. Ed., 2020, 59(16), 6442—6450 |
99 | Hu Y., Florio F., Chen Z., Phelan W. A., Siegler M. A., Zhou Z., Guo Y., Hawks R., Jiang J., Feng J., Zhang L., Wang B., Wang Y., Gall D., Palermo E. F., Lu Z., Sun X., Lu T. M., Zhou H., Ren Y., Wertz E., Sundararaman R., Shi J., Sci. Adv., 2020, 6(9), eaay4213 |
100 | Zhao Y., Dong M., Feng J., Zhao J., Guo Y., Fu Y., Gao H., Yang J., Jiang L.,Wu Y., Adv. Opt. Mater., 2021, 10(3), 2102227 |
101 | Rubin N. A., D’Aversa G., Chevalier P., Shi Z., Chen W. T., Capasso F., Science, 2019, 365(6448), eaax1839 |
102 | Ji C., Dey D., Peng Y., Liu X., Li L., Luo J., Angew. Chem. Int. Ed., 2020, 59(43), 18933—18937 |
103 | Arbabi E., Kamali S. M., Arbabi A., Faraon A., ACS Photonics, 2018, 5(8), 3132—3140 |
104 | Partanen H., Friberg A. T., Setälä T., Turunen J., Photon. Res., 2019, 7(6), 669—677 |
105 | Shahriar M. S., Shen J. T., Tripathi R., Kleinschmit M., Nee T. W., Nee S. M. F., Opt. Lett., 2004, 29(3), 298—300 |
106 | Ma J., Fang C., Liang L., Wang H., Li D., Small, 2021, 17(47), e2103855 |
[1] | JIA Yanggang, SHAO Xia, CHENG Jie, WANG Pengpeng, MAO Aiqin. Preparation and Lithium Storage Performance of Pseudocapacitance-controlled Perovskite High-entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220157. |
[2] | XIA Dacheng, ZHOU Rui, TU Bo, CAI Zhiwei, GAO Nan, JI Xiaoxu, CHANG Gang, REN Xiaoming, HE Yunbin. Fabrication of Ag/Au Nanowires Array as a SERS Substrate for High-sensitivity Malachite Green Detection [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210731. |
[3] | JIANG Shan, SHEN Qianqian, LI Qi, JIA Husheng, XUE Jinbo. Pd-loaded Defective TiO2 Nanotube Arrays for Enhanced Photocatalytic Hydrogen Production Performance [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220206. |
[4] | WANG Wei, ZOU Bingchen, HOU Jie, ZHOU Wanli, LUO Jianping, WANG Kangli, JIANG Kai. In⁃situ Analysis of Interfacial Reaction Process Inside Li-Ga Liquid Metal Battery [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220261. |
[5] | ZHAO Lingyun, HUANG Hanxiong, LUO Duyu, SU Fengchun. Effect of Flexibility of Composites on Performances of Sensors with Micro-structured Inverted Pyramid Arrays [J]. Chem. J. Chinese Universities, 2021, 42(9): 2953. |
[6] | GAO Zhongnan, GUO Lihong, ZHAO Dongyue, LI Xingang. Effect of A Site-deficiency on the Structure and Catalytic Oxidation Activity of the La-Sr-Co-O Perovskite [J]. Chem. J. Chinese Universities, 2021, 42(9): 2869. |
[7] | WU Yaqiang, LIU Siming, JIN Shunjin, YAN Yongqing, WANG Zhao, CHEN Lihua, SU Baolian. Synthesis of Zn-Doped NiCoP Catalyst with Porous Double-layer Nanoarray Structure and Its Electrocatalytic Properties for Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2021, 42(8): 2483. |
[8] | XIE Fan, CHEN Shanshan, ZHUO Longhai, LU Zhaoqing, GAO Kun, DAI Qiyang. Fabrication of Poly(p-xylene) Nanofiber Arrays by CVD Liquid Crystal Template Method and Their Degradability [J]. Chem. J. Chinese Universities, 2021, 42(8): 2643. |
[9] | CHEN Shaoyun, ZHANG Xingying, LIU Ben, TIAN Du, LI Qi, CHEN Fang, HU Chenglong, CHEN Jian. Controllable Growth of Silver Nanoparticles on TiO2 Tetragonal Prism Nanarrays and Its SERS Effect [J]. Chem. J. Chinese Universities, 2021, 42(8): 2381. |
[10] | LI Yishan, GUO Liang, PENG Sifan, ZHANG Qingmao, ZHANG Yuhao, XU Shiqi. Cobalt Substitutions in Lanthanum Manganate Photocatalyst: First-principles and Visible-light Photocatalytic Ability Investigation [J]. Chem. J. Chinese Universities, 2021, 42(6): 1881. |
[11] | YUE Shengli, WU Guangbao, LI Xing, LI Kang, HUANG Gaosheng, TANG Yi, ZHOU Huiqiong. Research Progress of Quasi-two-dimensional Perovskite Solar Cells [J]. Chem. J. Chinese Universities, 2021, 42(6): 1648. |
[12] | SUN Hao, GONG Jie, YANG Yan, WANG Xinqing, CHEN Huidong. Synthesis of Three-dimensional Ordered In2O3 Nanowire Arrays and the Effect of Nanostructure Order on Gas Sensitivity [J]. Chem. J. Chinese Universities, 2021, 42(6): 1730. |
[13] | WANG Kunhua, YAO Jisong, YANG Junnan, SONG Yonghui, LIU Yuying, YAO Hongbin. Synthesis and Device Optimization of Highly Efficient Metal Halide Perovskite Light-emitting Diodes [J]. Chem. J. Chinese Universities, 2021, 42(5): 1464. |
[14] | DONG Luming, SU Yanyue, WANG Chunzheng, QIAO Yafei, CHEN Yajun, MA Haiyun. Synthesis of Micro- to Nano-scale Perovskite Calcium Hydroxytinate and Its Performance as a Flame Retardant in Epoxy Resin [J]. Chem. J. Chinese Universities, 2021, 42(3): 937. |
[15] | LIU Yao, DENG Zhengtao. Fast Synthesis of Highly Luminescent Two-dimensional Tin-halide Perovskites by Anti-solvent Method [J]. Chem. J. Chinese Universities, 2021, 42(12): 3774. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||