Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (8): 2483.doi: 10.7503/cjcu20210218
• Physical Chemistry • Previous Articles Next Articles
WU Yaqiang1, LIU Siming1, JIN Shunjin2, YAN Yongqing1, WANG Zhao1(), CHEN Lihua1, SU Baolian1,3(
)
Received:
2021-03-31
Online:
2021-08-10
Published:
2021-08-05
Contact:
WANG Zhao
E-mail:zhao.wang@whut.edu.cn;bao-lian.su@unamur.be
Supported by:
CLC Number:
TrendMD:
WU Yaqiang, LIU Siming, JIN Shunjin, YAN Yongqing, WANG Zhao, CHEN Lihua, SU Baolian. Synthesis of Zn-Doped NiCoP Catalyst with Porous Double-layer Nanoarray Structure and Its Electrocatalytic Properties for Hydrogen Evolution[J]. Chem. J. Chinese Universities, 2021, 42(8): 2483.
Catalyst | Mass loading/(mg·cm-2) | η10/mV | η100/mV | Tafel slope/(mV·dec-1) | Ref. |
---|---|---|---|---|---|
H?Zn?NiCo?P/NF?15 | 1.53 | 59 | 156 | 66 | This work |
NiCoP?CoP/NF | 1.5 | 73 | 183 | 91.3 | [ |
NC?CNT/CoP | 1.5 | 120 | 225 | 73 | [ |
Mo?NiCoP?3 | 2 | 76 | 148 | 60 | [ |
NC0.9F0.1P HHAs/NF | — | 122.5 | 198 | 54.36 | [ |
S?NiCoP NW/CFP | 1 | 120 | 172 | 63.3 | [ |
N?NiCoP NWs/CFP | 0.9 | 105.1 | 162.5 | 59.8 | [ |
NiFe LDH@NiCoP/NF | 2 | 120 | 320 | 88.2 | [ |
NiCoP/NPC | — | 80 | 150 | 48.9 | [ |
Ni0.7Co0.3P | 0.25 | 105 | 270 | 58 | [ |
Co2P?CC?0.6 | 0.6 | 80 | 185 | 80 | [ |
Co0.7Fe0.3P3 NAs | 1.03 | 167 | — | 65.1 | [ |
Cu@CoP/Cu | — | 88 | 163 | 66.1 | [ |
Al?CoP/NF | 6.51 | 66 | 350 | 94 | [ |
Catalyst | Mass loading/(mg·cm-2) | η10/mV | η100/mV | Tafel slope/(mV·dec-1) | Ref. |
---|---|---|---|---|---|
H?Zn?NiCo?P/NF?15 | 1.53 | 59 | 156 | 66 | This work |
NiCoP?CoP/NF | 1.5 | 73 | 183 | 91.3 | [ |
NC?CNT/CoP | 1.5 | 120 | 225 | 73 | [ |
Mo?NiCoP?3 | 2 | 76 | 148 | 60 | [ |
NC0.9F0.1P HHAs/NF | — | 122.5 | 198 | 54.36 | [ |
S?NiCoP NW/CFP | 1 | 120 | 172 | 63.3 | [ |
N?NiCoP NWs/CFP | 0.9 | 105.1 | 162.5 | 59.8 | [ |
NiFe LDH@NiCoP/NF | 2 | 120 | 320 | 88.2 | [ |
NiCoP/NPC | — | 80 | 150 | 48.9 | [ |
Ni0.7Co0.3P | 0.25 | 105 | 270 | 58 | [ |
Co2P?CC?0.6 | 0.6 | 80 | 185 | 80 | [ |
Co0.7Fe0.3P3 NAs | 1.03 | 167 | — | 65.1 | [ |
Cu@CoP/Cu | — | 88 | 163 | 66.1 | [ |
Al?CoP/NF | 6.51 | 66 | 350 | 94 | [ |
1 | Ursua A., Gandia L. M., Sanchis P., Proc. IEEE, 2012, 100(2), 410—426 |
2 | Anantharaj S., Ede S. R., Karthick K., Sam Sankar S., Sangeetha K., Karthik P. E., Kundu S., Energy Environ. Sci., 2018, 11(4), 744—771 |
3 | Wang W. F., Qin S., Zhang R. R., Zhou P. P., Yang Q. H., Chen T. Y., Chem. J. Chinese Universities, 2019, 40(9), 1979—1987(王文峰, 秦山, 张荣荣, 周盼盼, 杨庆华, 陈天云. 高等学校化学学报, 2019, 40(9), 1979—1987) |
4 | Zhou Y., Yang Y. Y., Wang R. J., Wang X. T., Zhang X. Y., Qiang L. L., Wang W. B., Wang Q., Hu Z. G., J. Mater. Chem. A, 2018, 6(39), 19038—19046 |
5 | Popczun E. J., Read C. G., Roske C. W., Lewis N. S., Schaak R. E., Angew. Chem. Int. Ed., 2014, 53(21), 5427—5430 |
6 | Callejas J. F., Read C. G., Popczun E. J., McEnaney J. M., Chem. Mater., 2015, 27(10), 3769—3774 |
7 | Rad P. J., Aliofkhazraei M., Darband G. B., Int. J. Hydrogen Energy, 2019, 44(2), 880—894 |
8 | Li Y., Wang H., Xie L., Liang Y., Hong G., Dai H., J. Am. Chem. Soc., 2011, 133(19), 7296—7299 |
9 | Pan L. F., Li Y. H., Yang S., Liu P. F., Yu M. Q., Yang H. G., Chem. Commun., 2014, 50(86), 13135—13137 |
10 | Jin E., Song K. X., Cui L. L., Chem. J. Chinese Universities, 2020, 41(6), 1362—1369(金娥, 宋开绪, 崔丽莉. 高等学校化学学报, 2020, 41(6), 1362—1369) |
11 | Lu Z., Zhu W., Yu X., Zhang H., Li Y., Sun X., Wang X., Wang H., Wang J., Luo J., Lei X., Jiang L., Adv. Mater., 2014, 26(17), 2683—2687 |
12 | Jiang Y. Y., Li B. Y., Lu Y. Z., Wu T. S., Han D. X., Chem. J. Chinese Universities, 2020, 41(12), 2774—2780(姜媛媛, 李伯语, 逯一中, 吴同舜, 韩冬雪. 高等学校化学学报, 2020, 41(12), 2774—2780) |
13 | Popczun E. J., McKone J. R., Read C. G., Biacchi A. J., Wiltrout A. M., Lewis N. S., Schaak R. E., J. Am. Chem. Soc., 2013, 135(25), 9267—9270 |
14 | Huang X., Gong L., Xu H., Qin J., Ma P., Yang M., Wang K., Ma L., Mu X., Li R., J. Colloid Interface Sci., 2020, 569, 140— 149 |
15 | Men Y. N., Li P., Zhou J. H., Cheng G. Z., Chen S. L., Luo W., ACS Catal., 2019, 9(4), 3744—3752 |
16 | Liu H., Ma X., Hu H., Pan Y. Y., Zhao W. N., Liu J. L., Zhao X. Y., Wang J. L., Yang Z. X., Zhao Q. S., Ning H., Wu M. B., ACS Appl. Mater. Interfaces, 2019, 11(17), 15528—15536 |
17 | Li M., Li S., Wang J., Wang C., Li W., Chu P. K., Nanotechnol., 2019, 30(48), 485402 |
18 | Guan C., Wu H. J., Ren W. N., Yang C. H., Liu X. M., Ouyang X. F., Song Z. Y., Zhang Y. Z., Pennycook S. J., Cheng C. W., Wang J., J. Mater. Chem. A, 2018, 6(19), 9009—9018 |
19 | Guo M. M., Qu Y. H., Yuan C. L., Chen S., Electrochim. Acta, 2019, 322, 134768 |
20 | Liu T. T., Liu D. N., Qu F. L., Wang D. X., Zhang L., Ge R. X., Hao S., Ma Y. J., Du G., Asiri A. M., Chen L., Sun X. P., Adv. Energy Mater., 2017, 7(15), 1700020 |
21 | Man H. W., Tsang C. S., Huang B. L., Lee L. Y., Leung Y. C., Wong K. Y., Appl. Catal. B, 2019, 242, 186—193 |
22 | Li Y. J., Zhang H. C., Jiang M., Zhang Q., He P. L., Sun X. M., Adv. Funct. Mater., 2017, 27(37), 1702513 |
23 | Li Y. J., Zhang H. C., Jiang M., Kuang Y., Sun X. M., Duan X., Nano Res., 2016, 9(8), 2251—2259 |
24 | Lin J. H., Yan Y. T., Li C., Si X. Q., Wang H. H., Qi J. L., Cao J., Zhong Z. X., Fei W. D., Feng J. C., Nano⁃Micro Lett., 2019, 11(1), 1—11 |
25 | Qi Y., Zhang Q. X., Meng S. C., Li D., Wei W. X., Jiang D. L., Chen M., Electrochim. Acta, 2020, 334, 135633 |
26 | Dong B., Xie J. Y., Wang N., Gao W. K., Ma Y., Chen T. S., Yan X. T., Li Q. Z., Zhou Y. L., Chai Y. M., Renewable Energy, 2020, 157, 415—423 |
27 | Bera S., Katiyar A. K., Sinha A. K., Mondal S. P., Ray S. K., Mater. Des., 2016, 101, 197—203 |
28 | Qi Y. Y., Zhang L., Sun L., Chen G. J., Luo Q. M., Xin H. Q., Peng J. H., Li Y., Ma F., Nanoscale, 2020, 12(3), 1985— 1993 |
29 | Zhang L., Qi Y. Y., Sun L., Chen G. J., Wang L. X., Zhang M. S., Zeng D. J., Chen Y. N., Wang X. G., Xu K. W., Ma F., Appl. Surf. Sci., 2020, 512, 145715 |
30 | Zhang H. J., Li X. P., Hähnel A., Naumann V., Lin C., Azimi S., Schweizer S. L., Maijenburg A. W., Wehrspohn R. B., Adv. Funct. Mater., 2018, 28(14), 1706847 |
31 | Li Z. B., Wang J., Liu X. J., Li R., Wang H., Wu Y., Wang X. Z., Lu Z. P., Scr. Mater., 2019, 173, 51—55 |
32 | Dai K. Q., Gao X. Y., Yin L. X., Feng Y. N., Zhou X. P., Zhao Y. F., Zhang B., Appl. Surf. Sci., 2019, 494, 22—28 |
33 | Li K. D., Zhang F. F., Wu H. R., Wang Y. N., Du J. M., Lu Y. Y., Wang W. M., Zhao G. Y., Kang D. J., J. Solid State Electrochem., 2018, 22(12), 3977—3983 |
34 | Lin L., Fu Q., Han Y. P., Wang J. N., Zhang X. Q., Zhang Y. H., Hu C., Liu Z. G., Sui Y., Wang X. J., J. Alloys Compd., 2019, 808, 151767 |
35 | Wang P. C., Lin Y. Q., Wan L., Wang B. G., Energy Fuels, 2020, 34(8), 10276—10281 |
36 | Lv X. W., Hu Z. P., Ren J. T., Liu Y. P., Wang Z., Yuan Z. Y., Inorg. Chem. Front., 2019, 6(1), 74—81 |
37 | Li H., Chen S., Zhang Y., Zhang Q., Jia X., Zhang Q., Gu L., Sun X., Song L., Wang X., Nat. Commun., 2018, 9(1), 2452 |
38 | Yin Y., Xu J., Guo W., Wang Z., Electrochim. Acta, 2019, 307, 451—458 |
39 | Zhang C., Huang Y., Yu Y. F., Zhang J. F., Zhuo S. F., Zhang B., Chem. Sci., 2017, 8(4), 2769—2775 |
40 | Wang Y., Zhou W., Jia R., Yu Y., Zhang B., Angew Chem. Int. Ed. Engl., 2020, 59(13), 5350—5354 |
41 | Wei C., Rao R. R., Peng J., Huang B., Stephens I. E. L., Risch M., Xu Z. J., Shao⁃Horn Y., Adv. Mater., 2019, 31(31), 1806296 |
[1] | FAN Jianling, TANG Hao, QIN Fengjuan, XU Wenjing, GU Hongfei, PEI Jiajing, CEHN Wenxing. Nitrogen Doped Ultra-thin Carbon Nanosheet Composited Platinum-ruthenium Single Atom Alloy Catalyst for Promoting Electrochemical Hydrogen Evolution Process [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220366. |
[2] | YANG Lijun, YU Yang, ZHANG Lei. Construction of Dual-functional 2D/3D Hydrid Co2P-CeO x Heterostructure Integrated Electrode for Electrocatalytic Urea Oxidation Assisted Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220082. |
[3] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
[4] | JIN Xiangyuan, ZHANG Libing, SUN Xiaofu, HAN Buxing. Electrocatalytic CO2 Reduction over Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220035. |
[5] | ZHANG Xiaoyu, XUE Dongping, DU Yu, JIANG Su, WEI Yifan, YAN Wenfu, XIA Huicong, ZHANG Jianan. MOF-derived Carbon-based Electrocatalysts Confinement Catalyst on O2 Reduction and CO2 Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210689. |
[6] | HE Yujing, LI Jiale, WANG Dongyang, WANG Fuling, XIAO Zuoxu, CHEN Yanli. Zinc-based Activated Fe/Co/N Doped Biomass Carbon Electrocatalysts with High Oxygen Reduction Activity [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220475. |
[7] | WANG Zumin, MENG Cheng, YU Ranbo. Doping Regulation in Transition Metal Phosphides for Hydrogen Evolution Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220544. |
[8] | XU Xiaojian, LI Bo, LIN Mengxiao, ZHAN Shuo. Vacuum Freeze Drying to Prepare Porous Carbon Based Composite Membranes for Efficient Solar Steam Generation [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220361. |
[9] | ZHANG Xu, QUE Jiaqian, HOU Yuexin, LYU Jiamin, LIU Zhan, LEI Kunhao, YU Shen, LI Xiaoyun, CHEN Lihua, SU Baolian. Hierarchical Mesoporous-microporous TS-1 Single Crystal Catalysts for Epoxidation of Allyl Chloride [J]. Chem. J. Chinese Universities, 2021, 42(8): 2529. |
[10] | WANG Yuxiang, YU Shen, LIU Zhan, LYU Jiamin, LI Xiaoyun, CHEN Lihua, SU Baolian. One-step Synthesis of Amorphous Silica Aluminum Support Materials with Controllable Acidity and Porosity and Catalytic Performance of Their Pd-based Catalysts [J]. Chem. J. Chinese Universities, 2021, 42(6): 1826. |
[11] | ZHANG Nan, HAN Kuo, LI Yue, WANG Chunru, ZHAO Feng, HAN Dongxue, NIU Li. Core-shell Heterostructure Construction Between Thiospinel CuCo2S4 and MoS2 for Improved Hydrogen Evolution Electrocatalytic Performance [J]. Chem. J. Chinese Universities, 2021, 42(4): 1307. |
[12] | YANG Tao, YAO Huiying, LI Qing, HAO Wei, CHI Lifeng, ZHU Jia. Density Functional Theoretical Studies on the Promising Electrocatalyst of M-BHT(M=Co or Cu) for CO2 Reduction to CH4 [J]. Chem. J. Chinese Universities, 2021, 42(4): 1268. |
[13] | HE Qianqian, WANG Zhe, MENG Lingjia, CHEN Qian, GONG Yongji. Recent Advances of Hydrogen Evolution Reaction Catalysis Based on Transition Metal Dichalcogenides [J]. Chem. J. Chinese Universities, 2021, 42(2): 523. |
[14] | ZHAO Guoqing, YUAN Zhao, WANG Lian, GUO Zhuo. Preparation of Ni2P/N, S co-Doped Reduced Graphene Oxide Composites and Their Electrocatalytic Properties for Hydrogen Evolution† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1575. |
[15] | SUN Qiangqiang, CAO Baoyue, ZHOU Chunsheng, ZHANG Guochun, WANG Zenglin. Enhancing Hydrogen Evolution Performance of a Regular Cube NiCu Nanocrystalline Electrocatalyst Fabricated by Normal Pluse Electrodeposition [J]. Chem. J. Chinese Universities, 2020, 41(6): 1287. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||