Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (5): 1010.doi: 10.7503/cjcu20190626
• Organic Chemistry • Previous Articles Next Articles
ZHU Ling,WANG Yuchen,ZHAO Jiangyuan,WEN Mengliang,LI Minggang(),HAN Xiulin(
)
Received:
2019-12-04
Online:
2020-05-10
Published:
2020-01-13
Contact:
Minggang LI,Xiulin HAN
E-mail:mgli727@126.com;xlhan@ynu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHU Ling,WANG Yuchen,ZHAO Jiangyuan,WEN Mengliang,LI Minggang,HAN Xiulin. Transformation of Ginsenoside Rb3 and C-Mx by Recombinant β-Xylosidase [J]. Chem. J. Chinese Universities, 2020, 41(5): 1010.
Stage | Total activity/U | Total protein mass/mg | Specific activity/ (U·mg-1) | Yield(%) | Purification fold |
---|---|---|---|---|---|
Crude extract | 1548±0.15 | 7866±7.89 | 0.20 | 100 | — |
Protein purification | 72±0.12 | 26.84±3.15 | 50 | 0.05 | 253 |
Stage | Total activity/U | Total protein mass/mg | Specific activity/ (U·mg-1) | Yield(%) | Purification fold |
---|---|---|---|---|---|
Crude extract | 1548±0.15 | 7866±7.89 | 0.20 | 100 | — |
Protein purification | 72±0.12 | 26.84±3.15 | 50 | 0.05 | 253 |
Metal cation/ reagent | Relative enzyme activity(%) | ||
---|---|---|---|
10 mmol/L | 50 mmol/L | 100 mmol/L | |
NaCl | 156±0.02 | 162±0.08 | 148±0.08 |
KCl | 123±0.34 | 119±0.21 | 125±0.02 |
MgCl2 | 105±0.06 | 153±0.02 | 161±0.02 |
CuCl2 | 116±0.07 | 107±0.06 | 55±0.15 |
CaCl2 | 92±0.08 | 90±0.07 | 98±0.10 |
CoCl2 | 103±10.05 | 108±0.06 | 97±0.24 |
NiCl2 | 83±0.21 | 83±0.29 | 96±0.08 |
SDS | 118±0.32 | 98±0.02 | 33±0.23 |
EDTA-Na2 | 96±0.02 | 50±0.02 | 33±0.08 |
DTT | 92±0.05 | 99±0.09 | 94±0.01 |
Metal cation/ reagent | Relative enzyme activity(%) | ||
---|---|---|---|
10 mmol/L | 50 mmol/L | 100 mmol/L | |
NaCl | 156±0.02 | 162±0.08 | 148±0.08 |
KCl | 123±0.34 | 119±0.21 | 125±0.02 |
MgCl2 | 105±0.06 | 153±0.02 | 161±0.02 |
CuCl2 | 116±0.07 | 107±0.06 | 55±0.15 |
CaCl2 | 92±0.08 | 90±0.07 | 98±0.10 |
CoCl2 | 103±10.05 | 108±0.06 | 97±0.24 |
NiCl2 | 83±0.21 | 83±0.29 | 96±0.08 |
SDS | 118±0.32 | 98±0.02 | 33±0.23 |
EDTA-Na2 | 96±0.02 | 50±0.02 | 33±0.08 |
DTT | 92±0.05 | 99±0.09 | 94±0.01 |
Concentration/ (mol·L-1) | Relative enzyme activity(%) | ||
---|---|---|---|
D-Xylose | Glucose | Ethanol | |
0 | 100±0.08 | 100±0.02 | 100±0.05 |
0.2 | 59±0.30 | 99±0.04 | Not detected |
0.4 | 57±0.67 | 96±0.08 | Not detected |
0.6 | 51±0.05 | 95±0.02 | Not detected |
0.8 | 7±0.42 | 95±0.07 | 99±0.72 |
1 | 5±0.05 | 99±0.04 | 97±0.13 |
1.5 | Not detected | Not detected | 96±0.06 |
3 | Not detected | Not detected | 77±0.12 |
5 | Not detected | Not detected | 52±0.05 |
7 | Not detected | Not detected | 22±0.21 |
Concentration/ (mol·L-1) | Relative enzyme activity(%) | ||
---|---|---|---|
D-Xylose | Glucose | Ethanol | |
0 | 100±0.08 | 100±0.02 | 100±0.05 |
0.2 | 59±0.30 | 99±0.04 | Not detected |
0.4 | 57±0.67 | 96±0.08 | Not detected |
0.6 | 51±0.05 | 95±0.02 | Not detected |
0.8 | 7±0.42 | 95±0.07 | 99±0.72 |
1 | 5±0.05 | 99±0.04 | 97±0.13 |
1.5 | Not detected | Not detected | 96±0.06 |
3 | Not detected | Not detected | 77±0.12 |
5 | Not detected | Not detected | 52±0.05 |
7 | Not detected | Not detected | 22±0.21 |
[1] | Park J. D., Rhee D. K., Lee Y. H., Phytochem. Rev., 2005,4(2/3), 159—175 |
[2] |
Wang L., Liu Q. M., Sung B. H., An D. S., Lee H. G., Kim S. G., Kim S. C., Lee S. T., Im W. T., J. Biotechnol., 2011,156(2), 125—133
doi: 10.1016/j.jbiotec.2011.07.024 URL pmid: 21906640 |
[3] |
Attele A. S., Wu J. A., Yuan C. S., Biochem. Pharmacol., 1999,58(11), 1685—1693
doi: 10.1016/s0006-2952(99)00212-9 URL pmid: 10571242 |
[4] |
Yuan C. S., Wu J. A., Osinski J., Am. J. Clin. Nutr., 2002,75(3), 600—601
doi: 10.1093/ajcn/75.3.600 URL pmid: 11864869 |
[5] | Gao Y. G., Liu J. T., Ji Q., Zhao Y., Zang P., He Z. M., Zhu H. Y., Zhang L. X., Process Biochem., 2018,72, 198—208 |
[6] |
Karmazyn M., Gan X. T., J. Physiol. Pharmaco., 2018,97(4), 265—276
doi: 10.1139/cjpp-2018-0440 URL pmid: 30395481 |
[7] |
Yao H., Wan J. Y., Zeng J., Huang W. H., Sava-Segal C., Li L., Niu X., Wang Q., Wang C. Z., Yuan C. S., Oncol. Lett., 2018,15(6), 8339—8348
doi: 10.3892/ol.2018.8414 URL pmid: 29805567 |
[8] | Kim N. D., Kim E. M., Kang K. W., Cho M. K., Choi S. Y., Kim S. G., Brit. J. Pharmacol., 2003,140(4), 661—670 |
[9] | Liu Y., Li X. W., Zhang H. Q., Wu Q., Shi X. L., Jin Y. R., Chem. Res. Chinese Universities, 2018,34(3), 382—388 |
[10] | Tian J., Fu F ., Movement Disord, 2006,21(13), S76—S76 |
[11] | Yang J. L., Gao L. L., Zhu P., Acta Pharm. Sin., 2013,48(2), 170—178 |
( 杨金玲, 高丽丽, 朱平 . 药学学报, 2013,48(2), 170—178) | |
[12] | Noh K. H., Oh D. K., Biol. Pharm. Bul., 2009,32(11), 1830—1835 |
[13] | Xiao Y. K., Liu C. Y., Yu H. S., Li T. H., Xu L. Q., Song J. G., Lin W. T., Sun C. K., Jin F. X., Chem. J. Chinese Universities, 2019,40(6), 1148—1192 |
( 肖永坤, 刘春莹, 鱼红闪, 李泰厚, 徐龙权, 宋建国, 林完泽, 孙长凯, 金凤燮 . 高等学学化学学报, 2019,40(6), 1148—1192) | |
[14] | Shen R. Z., Cao X., Yu B., Acta Chim. Sinica, 2018,76(4), 278—285 |
( 沈仁增, 曹鑫, 俞飚 . 化学学报, 2018,76(4), 278—285) | |
[15] | Yu J., Sun J. S., Niu Y. M., Li R. Y., Liao J. X., Zhang F. Y., Yu B., Chem. Sci., 2013,4(10), 3899—3905 |
[16] | Li X., Zang P., Zhang L. X., Gao Y. G., Li P., Hao J. X., Wang Y. X., Food Sci., 2012,33(11), 323—327 |
( 李学, 臧埔, 张连学, 郜玉钢, 李萍, 郝建勋, 王亚星 . 食品科学, 2012,33(11), 323—327) | |
[17] | Yan S., Wei P. C., Chen Q., Chen X., Wang S. C., Li J. R., Gao C., Biochem. Bioph. Res. Co., 2018,496(4), 1349—1359 |
[18] |
Kim M. J., Jitendra U. Y., Yun M. S., Ryu N. S., Song Y. E., Park H. W., Kim Y. H., Kim M. K., J. Ginseng Res., 2017,42(4), 504—511
doi: 10.1016/j.jgr.2017.07.001 URL pmid: 30337811 |
[19] |
Shin H. Y., Lee J. H., Lee J. Y., Han Y. O., Han M. J., Kim D. H., Biol. Pharm. Bull, 2003,26(8), 1170—1173
doi: 10.1248/bpb.26.1170 URL pmid: 12913270 |
[20] | Hyun Y. J., Kim B., Kim D. H., J. Microbiol.Biotechn., 2012,22(4), 535—540 |
[21] | Chen S., Liu C. Y., Wang Y. F., Yu H. S., Jin F. X., J. Dalian Polytech. Univ., 2017,36(4), 255—259 |
( 陈双, 刘春莹, 王亚芳, 鱼红闪, 金凤燮 . 大连工业大学学报, 2017,36(4), 255—259) | |
[22] |
Kumar S., Stecher G., Li M., Knyaz C., Tamura K., Mol. Biol. Evol, 2018,35(6), 1547—1549
doi: 10.1093/molbev/msy096 URL pmid: 29722887 |
[23] |
Saitou N., Nei M., Mol. Biol. Evol, 1987,4(4), 406—425
doi: 10.1093/oxfordjournals.molbev.a040454 URL pmid: 3447015 |
[24] |
Lee C. K., Araki N., Sowersby D. S., Lewis L. K., Yeast, 2012,29(2), 73—80
doi: 10.1002/yea.1918 URL pmid: 22134898 |
[25] |
Yu W. B., Liang X., Zhu P., J. Ind. Microbiol. Biotechnol., 2013,40(1), 133—140
doi: 10.1007/s10295-012-1212-z URL pmid: 23179466 |
[26] | Wan J., Wang D., Fu T., Li R. J., Liao H. J., Tang Y. M., Food Sci., 2016,37(7), 104—109 |
( 万骥, 王丹, 傅婷, 李蕊伽, 廖海君, 唐云明 . 食品科学, 2016,37(7), 104—109) | |
[27] |
Laemmli U. K., Nature, 1970,227(5259), 680—685
doi: 10.1038/227680a0 URL pmid: 5432063 |
[28] | Bradford M. M., Anal. Biochem., 1976,25(1), 248—256 |
[29] |
Grange D. C. L., Pretorius I. S., Zyl W. H. V., Appl. Microbiol. Biot., 1997,47(3), 262—266
doi: 10.1007/s002530050924 URL pmid: 9114518 |
[30] |
Selig M. J., Konshaug E. P., Decker S. R., Baker J. O., Himmel M. E., Appl. Biochem. Biotech., 2008,146(1/3), 57—68
doi: 10.1007/s12010-007-8069-z URL pmid: 18421587 |
[31] | Choengpanya K., Arthornthurasuk S., Wattana-Amom P., Huang W. T., Plengmuankhae W., Li Y. K., Kongsaeree P. T., Protein Expres. Purif., 2015,115, 132—140 |
[32] | Zhang S. Y., Wang H. W., Shi P. J., Xu B., Bai Y. G., Luo H. Y., Yao B., Process Biochem., 2014,49(9), 1422—1428 |
[33] | Garcia N. F. L., Santos F. R. S., Gonçalves F. A., Paz M. F., Fonseca G. G., Leite R. S. R., Electron. J. Biotechn., 2015,18(4), 314—319 |
[34] |
Li Q., Wu T., Qi Z. P., Zhao L. G., Pei J. J., Tang F., BMC Biotechnol., 2018,18(1), 1—11
doi: 10.1186/s12896-017-0411-0 URL pmid: 29316906 |
[35] |
Lineweaver H., Burk D ., J. Am. Chem. Soc., 1934,56(3), 658—666
doi: 10.1021/ja01318a036 URL |
[36] | Nie C. P., Yang J., Wu D., Wan L. P., Liang G. P., . Chem. ResChinese Universities, 2019,35(5), 823—829 |
[37] | Luan H. W., Liu X., Qi X. H., Hu Y., Hao D. C., Cui Y., Yang L., Process Biochem., 2006,41(9), 1974—1980 |
[38] | Lu C. W., Yin Y. G., Innov. Food Sci. Emerg., 2014,22, 95—101 |
[39] |
Zhou W., Feng M. Q., Li J. Y., Zhou P., J. Asian Nat. Prod. Res., 2006,8(6), 519—527
doi: 10.1080/10286020500208600 URL pmid: 16931427 |
[1] | TANG Yujing, HU Min, WANG Xia, WANG Qigang. Advances in Enzyme-load Nanocatalytic Systems for Disease Treatment [J]. Chem. J. Chinese Universities, 0, (): 20220640. |
[2] | CHANG Liying, LING Xinyu, CHEN Heqi, WANG Xue, LIU Tao. Application of Gene Editing in Mitochondrial Diseases [J]. Chem. J. Chinese Universities, 2022, 43(Album-4): 20220363. |
[3] | CAO Shujie, LI Hongjun, GUAN Wenli, REN Mengtian, ZHOU Chuanzheng. Progress on the Stereocontrolled Synthesis of Phosphorothioate Oligonucleotides [J]. Chem. J. Chinese Universities, 2022, 43(Album-4): 20220304. |
[4] | XU Yongbin, FENG Shuaixia, CHEN Jie, GONG Hua, SHI Songshan, WANG Huijun, WANG Shunchun. Structural Characterization of a Homogeneous Polysaccharide Isolated From the Flower of Carthamus tinctorius L. and Its Inhibitory Activity on HepG2 Proliferation [J]. Chem. J. Chinese Universities, 0, (): 20220600. |
[5] | WU Yushuai, SHANG Yingxu, JIANG Qiao, DING Baoquan. Research Progress of Controllable Self-assembled DNA Origami Structure as Drug Carrier [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220179. |
[6] | LIU Wenting, LIU Liuyi, ZHU Bochen, MAO Zongwan. Progress on the Recognition, Complex Structure and Intracellular Detection of Nucleic Acid G-quadruplex [J]. Chem. J. Chinese Universities, 0, (): 20220419. |
[7] | HU Yucan, CAO Zhaohui, ZHENG Linggang, SHEN Juntao, ZHAO Wei, DAI Lei. Application of CRISPR-Cas Technologies in Microbiome Engineering [J]. Chem. J. Chinese Universities, 0, (): 20220362. |
[8] | FANG Xin, ZHAO Ruiqi, MO Jing, WANG Yafen, WENG Xiaocheng. Sequencing Methods for Detection of Nucleic Acid Epigenetic Modifications [J]. Chem. J. Chinese Universities, 0, (): 20220342. |
[9] | ZHANG Kaisong, WANG Shaoru, ZHANG Yutong, TIAN Tian. Study of Epigenetic Modifications of Nucleic Acids Based on Supramolecular Chemistry [J]. Chem. J. Chinese Universities, 0, (): 20220335. |
[10] | ZHU Kai, LI Jie, WU Xiaoyi, HU Weiwei, WU Dongmei, YU Chengxiao, GE Zhiwei, YE Xingqian, CHEN Shiguo. Combined PGC-Triple-Tof-MS Enables the Separation, Identification of Sugar Beet Pectin Derived Oligomers [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220023. |
[11] | FU Jun, WU Meichan, WANG Shuzhen, SHAO Xiuli, HE Feng. Antifungal Mechanism of Fubaiju Essential Oil According to Labeling Method [J]. Chem. J. Chinese Universities, 2021, 42(12): 3657. |
[12] | ZHAO Zhuo, WANG Xueqiang. Investigations upon the Bioconjugation-based Construction Technologies and Applications of Aptamer-drug Conjugates [J]. Chem. J. Chinese Universities, 2021, 42(11): 3367. |
[13] | CHEN Wang, HU Daihua, LIU Gege. Synthesis of Ursodeoxycholic Acid from Dehydroiso-androsterone 3-Acetate [J]. Chem. J. Chinese Universities, 2021, 42(9): 2782. |
[14] | HU Haocheng, LI Wenli, ZHANG Jianing, LIU Yubo. Extraction, Structure Characterization and Biological Activities of Oligosaccharides from Auricularia heimuer [J]. Chem. J. Chinese Universities, 2021, 42(8): 2465. |
[15] | YANG Yiran, YAO Hua, YAN Jianghong, SUN Zhiheng, ZHANG Yu, FANG Xueqing, LI Xuwen, JIN Yon⁃Ri. Chemical Constituents of New Steroidal Saponins from Allium chinense G. Don [J]. Chem. J. Chinese Universities, 2021, 42(6): 1742. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||