Chem. J. Chinese Universities ›› 2019, Vol. 40 ›› Issue (3): 528.doi: 10.7503/cjcu20180534
• Physical Chemistry • Previous Articles Next Articles
LU Xinhuan, TAO Peipei, HUANG Fengfeng, ZHANG Xianggui, LIN Zhicheng, PAN Haijun, ZHANG Haifu, ZHOU Dan*(), XIA Qinghua*(
)
Received:
2019-07-27
Online:
2019-01-24
Published:
2019-01-24
Contact:
ZHOU Dan,XIA Qinghua
E-mail:d.zhou@hubu.edu.cn;xiaqh518@aliyun.com
Supported by:
CLC Number:
TrendMD:
LU Xinhuan,TAO Peipei,HUANG Fengfeng,ZHANG Xianggui,LIN Zhicheng,PAN Haijun,ZHANG Haifu,ZHOU Dan,XIA Qinghua. Nano-SnO2 as Highly Efficient Catalyst for Epoxidation of Cyclic Olefins with Aqueous H2
Entry | Catalyst | Conversion(%) | Selectivity to epoxy cyclohexeneb(%) |
---|---|---|---|
1 | None | 35.7 | 96.0 |
2 | Nano-Bi2O3 | 37.4 | 70.4 |
3 | GeO2 | 75.5 | 90.1 |
4 | ZrO2 | 81.5 | 91.2 |
5 | Nano-ZnO | 69.5 | 93.4 |
6 | Al2O3 | 69.8 | 95.2 |
7 | SnO2 | 92.0 | 95.1 |
8 | Nano-SnO2-170 | 99.9 | 98.1 |
Table 1 Effect of different catalysts on epoxidation of cyclohexenea
Entry | Catalyst | Conversion(%) | Selectivity to epoxy cyclohexeneb(%) |
---|---|---|---|
1 | None | 35.7 | 96.0 |
2 | Nano-Bi2O3 | 37.4 | 70.4 |
3 | GeO2 | 75.5 | 90.1 |
4 | ZrO2 | 81.5 | 91.2 |
5 | Nano-ZnO | 69.5 | 93.4 |
6 | Al2O3 | 69.8 | 95.2 |
7 | SnO2 | 92.0 | 95.1 |
8 | Nano-SnO2-170 | 99.9 | 98.1 |
Fig.4 Effect of synthesis temperature on the epoxidation over nano-SnO2Reaction conditions:nano-SnO2(100 mg), CH3CN(4 mL), acetone(4 mL), 0.2 mol/L NaHCO3(4 mL), cyclohexene(10 mmol), H2O2(12 mmol), 50 ℃, 2.0 h.
Fig.5 Effect of catalyst amount(A), cyclohexene amount(B), solvent(C) and reaction time(D) on epoxidation of cyclohexene Reaction conditions: nano-SnO2-170(100 mg), solvent(4 mL), acetone(4 mL), 0.2 mol/L NaHCO3(4 mL), cyclohexene(10 mmol), H2O2(12 mmol), 50 °C, 0.5—2.5 h. (C) Solvent: a. acetonitrile; b. benzonitrile;c. DMF; d. 1,4-dioxane; e. ethylacetate; f. ethanol; g. butanone; h. cyclohexanone.
Fig.6 Recycling results of nano-SnO2 catalystReaction conditions:nano-SnO2-170(100 mg), CH3CN(4 mL), acetone(4 mL), 0.2 mol/L NaHCO3(4 mL), H2O2(12 mmol), 50 ℃, 2.0 h.
[1] | Xia Q. H., Ge H. Q., Ye C. P., Liu Z. M., Su K. X., Chem. Rev., 2005, 105, 1603—1662 |
[2] | Punniyamurthy T., Velusamy S., Iqbal J., Chem. Rev., 2005, 105, 2329—2364 |
[3] | Zhou D., Zhang T. J., Xia Q. H., Zhao Y. R., Lv K. X., Lu X. H., Nie R. F., Chem. Sci., 2016, 7, 4966—4972 |
[4] | Samantaray S. K., Parida K., Catal. Commun., 2005, 6, 578—581 |
[5] | Patil N.S.., Uphade B. S., Jana P., Bhargava S. K., Choudhary V. R.,J. Catal., 2004, 223, 236—239 |
[6] | Liang J., Zhang Q., Wu H., Meng G., Tang Q., Wang Y., Catal. Commun., 2004, 5, 665—669 |
[7] | Shen Y., Lu X. H., Wei C. C., Ma X. T., Peng C., He J., Zhou D., Xia Q. H., Mol. Catal., 2017, 433, 185—192 |
[8] | Peng C., Lu X. H., Shen Y., Wei C. C., He J., Zhou D., Xia Q. H., J. Mol. Catal. A: Chem., 2016, 423, 393—399 |
[9] | Lu X. H., Lei J., Wei X. L., Ma X. T., Zhou D., Xia Q. H., J. Mol. Catal. A: Chem., 2015, 400, 71—80 |
[10] | Xia K., Wang Y., Zhou D., Huang Z., Wu Z. H., Xia Q. H., Chem. J. Chinese Universities, 2019, 39(5), 941—948 |
(夏坤, 王艺, 周丹, 黄哲, 伍忠汉, 夏清华. 高等学校化学学报, 2019, 39(5), 941—948) | |
[11] | Wei X. L., Lu X. H., Zhang T. J., Zhou D., Nie R. F., Xia Q. H., Micropor. Mesopor. Mater., 2015, 214, 80—87 |
[12] | Zhang Y. D., Gao X. L., Jiang D. G., Chen X., Wang Z. J., Chem. J. Chinese Universities, 2003, 24(11), 2099—2102 |
(章亚东, 高晓蕾, 蒋登高, 陈霞, 王自健. 高等学校化学学报, 2003, 24(11), 2099—2102) | |
[13] | Zhao Y. R., Zhou D., Zhang T. J., Yang Y., Zhan K., Liu X. C., Min H., Lu X. H., Nie R. F., Xia Q. H., ACS Appl. Mater. Inter., 2019, 10, 6390—6397 |
[14] | Ma X. T., Lu X. H., Wei C. C., Zhao Z. S., Zhan H. J., Zhou D., Xia Q. H., Catal. Commun., 2015, 67, 98—102 |
[15] | Cao Y., Yu H., Peng F., Wang H., ACS Catal., 2014, 4, 1617—1625 |
[16] | Sha S., Yang H., Li J., Zhuang C. F., Gao S., Liu S., Catal. Commun., 2014, 43, 146—150 |
[17] | Zhang X., Wang G., Yang M., Lu Y., Dong W., Dang R., Gao H., Yu J., Catal. Sci. Technol., 2014, 4, 3082—3089 |
[18] | Jafarpour M., Rezaeifard A., Ghahramaninezhad M., Feizpour F., Green Chem., 2015, 17, 442—452 |
[19] | Thomas J. M., Johnson B. F. G., Raja R., Sankar G., Midgley P. A., Acc. Chem. Res., 2003, 36, 20—30 |
[20] | Choudary B.M.., Kantam M. L., Ranganath K. V. S., Mahendar K., Sreedhar B.,J. Am. Chem. Soc., 2004, 126, 3396—3397 |
[21] | Navrotsky A., Ma C., Lilova K., Birkner N., Science, 2010, 330, 199—201 |
[22] | Shi F., Tse M. K., Pohl M. M., Brückner A., Zhang S., Beller M., Angew. Chem. Int. Ed., 2007, 46, 8866—8868 |
[23] | Shi F., Tse M. K., Pohl M. M., Radnik J., Brückner A., Zhang S., Beller M., J. Mol. Catal. A: Chem., 2008, 292, 28—35 |
[24] | Carreiro E. P., Burke A. J., J. Mol. Catal. A: Chem., 2006, 249, 123—128 |
[25] | Choudhary V. R., Jha R., Chaudhari N. K., Jana P., Catal. Commun., 2007, 8, 1556—1560 |
[26] | Choudhary V. R., Jha R., Jana P., Catal. Commun., 2008, 10, 205—207 |
[27] | Najafpour M. M., Rahimi F., Amini M., Nayeria S., Bagherzadehd M., Dalton Trans., 2012, 41, 11026—11031 |
[28] | Bonon A.J.., Kozlov Y. N., Bahú J. O., Filho R. M., Mandelli D., Shul’pin G. B.,J. Catal., 2014, 319, 71—86 |
[29] | Lu X. H., Xia Q. H., Zhou D., Fang S. Y., Chen A. L., Dong Y. L., Catal. Commun., 2009, 11, 106—109 |
[30] | Lu X. H., Xia Q. H., Fang S. Y., Xie B., Qi B., Tang Z. R., Catal. Lett., 2009, 131, 517—525 |
[31] | Zhao H. J., Hou H. T., Cao J. M., Zheng M. B., Liu J. S., Zhang F., Acta Phys. Chim. Sin., 2007, 23, 959—963 |
[32] | Chu D. R., Mo J. H., Peng Q., Zhang Y. P., Wei Y. G., Zhang Z. B., ChemCatChem, 2011, 3, 371—377 |
[33] | Prakash K., Senthil K.P.., Pandiaraj S., Saravanakumar K., Karuthapandiana S.,J. Exp. Nanosci., 2016, 11, 1138—1155 |
[34] | Pescarmona P. P., Jacobs P. A., Catal. Today, 2008, 137, 52—60 |
[1] | LIU Xiaolei, LU Yongqiang, YOU Qi, LIU Guohui, YAO Wei, HU Riming, YAN Jixian, CUI Yu, YANG Xiaofeng, SUN Guoxin, JIANG Xuchuan. A 3-Hydroxythalidomide-based Ratiometric Fluorescent Probe for the Detection of H2O2 [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220070. |
[2] | ZHANG Xu, QUE Jiaqian, HOU Yuexin, LYU Jiamin, LIU Zhan, LEI Kunhao, YU Shen, LI Xiaoyun, CHEN Lihua, SU Baolian. Hierarchical Mesoporous-microporous TS-1 Single Crystal Catalysts for Epoxidation of Allyl Chloride [J]. Chem. J. Chinese Universities, 2021, 42(8): 2529. |
[3] | XU Mengyi, HUANG Xuewen, LI Xiaojie, WEI Wei, LIU Xiaoya. Fabrication of Biosensor Based on “Beads-on-a-String” Shaped Composite Nano-assembly Modified Screen Printed Electrode [J]. Chem. J. Chinese Universities, 2021, 42(6): 1768. |
[4] | XIE Xingyu, ZHAO Yaxiang, ZHAO Lizhi, LI Rishun, WU Dihao, YE Hui, XIN Qingping, LI Hong, ZHANG Yuzhong. Colorimetric Detection Method for H2O2 Based on Two-dimensional Metal-organic Frameworks of Metalloporphyrin [J]. Chem. J. Chinese Universities, 2020, 41(8): 1776. |
[5] | WANG Ruixue, YIN Dongmei, SONG Yongxin, SHAN Guiye. Preparation of CuS/Ag2S Nanocomposite and the Peroxidase-like Properties [J]. Chem. J. Chinese Universities, 2020, 41(6): 1218. |
[6] | LIU Xinchao,ZHAO Yarong,YUAN Zhenyan,ZHOU Dan,LU Xinhuan,XIA Qinghua. Controllable Synthesis of Ti-Beta Zeolite and Efficiently Catalytic Epoxidation of Cyclohexene† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1222. |
[7] |
CHEN Yan,DONG Xuejiao,SHAN Guiye.
Preparation of Liposome@Ag/Au Nanocomposites and Their Interaction with H2 |
[8] | WANG Hui, PEI Yanbo, HU Shaozheng, MA Wentao, SHI Shuoyu. Synthesis and “Two Channel Pathway” Photocatalytic H2O2 Production Ability of Band Gap Tunable K+ Doped Graphitic Carbon Nitride† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1503. |
[9] | CAI Zhuang,WANG Guiling,SONG Congying,YANG Xueying,HU Rong,YE Ke,ZHU Kai,CHENG Kui,YAN Jun,CAO Dianxue. Preparation of a Binder Free Electrode of NiAg Supported on Graphite Modified A4 Paper and Its Electrochemical Performance for H2O2 Reduction† [J]. Chem. J. Chinese Universities, 2018, 39(5): 1041. |
[10] | XIA Kun,WANG Yi,ZHOU Dan,HUANG Zhe,WU Zhonghan,XIA Qinghua. Rapid Synthesis of CoSAPO-5 Zeolite and Efficiently Catalytic Epoxidation of α-Pinene with Air† [J]. Chem. J. Chinese Universities, 2018, 39(5): 941. |
[11] | ZHONG Yong-Ke, LI Gui-Ying*, ZHU Liang-Fang, TANG Dian-Yong, HU Chang-Wei*. Direct Catalytic Hydroxylation of Several Typical Aromatic Compounds over Fe/Activated Carbon Catalyst [J]. Chem. J. Chinese Universities, 2007, 28(8): 1570. |
[12] | FENG Xia-Guang, ZHANG Min, ZHAO Hu, WANG Huai-You*. Determination of Vancomycin in Injection via Enzyme Catalysis-Fluorescence Quenching Method [J]. Chem. J. Chinese Universities, 2007, 28(7): 1270. |
[13] | ZHOU Wei, CHUN Yuan, XU Qin-Hua, WANG Cheng, DONG Jia-Lu . A Novel Liquid-solid Isomorphous Substitution Route for Preparing Zeolite Ti-β [J]. Chem. J. Chinese Universities, 2004, 25(1): 16. |
[14] | LIU Qing-Sheng, YU Jiang-Feng, YE Qiu-Shi, FU Ying-Huan, XU Ning, WU Tong-Hao . Preparation and Characterization of Nanoscales α-Fe2O3/Microporous resin Catalyst and the Application in Hydroxylation of Phenol with H2O2 to Dihydroxybenzene [J]. Chem. J. Chinese Universities, 2002, 23(2): 259. |
[15] | HAN Shu-Bo, ZHU Min, YUAN Zhuo-Bin . An Amperometric Hydrogen Peroxide Sensor Based on Supramolecular Inclusion Complex of β-CD Polymer as Immobilization Matrix [J]. Chem. J. Chinese Universities, 1999, 20(7): 1036. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||