Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (10): 20220301.doi: 10.7503/cjcu20220301
• Review • Previous Articles Next Articles
LI Dan, XIAO Liping, FAN Jie()
Received:
2022-05-06
Online:
2022-10-10
Published:
2022-06-20
Contact:
FAN Jie
E-mail:jfan@zju.edu.cn
Supported by:
CLC Number:
TrendMD:
LI Dan, XIAO Liping, FAN Jie. Inorganic-based Surface Materials with Anti-SARS-CoV-2 Properties and Their Mechanisms of Action[J]. Chem. J. Chinese Universities, 2022, 43(10): 20220301.
Surface/interface | Proposed mechanism of action | Persistence | Ref. |
---|---|---|---|
Cu | Not mentioned | No viable SARS?CoV?2, 4 h | [ |
Cu?coated polypropylene filter | Not mentioned | RdRp and E genes of SARS?CoV?2 were not detected, 1 h | [ |
Polymetal alloy containing 85% Cu(Luminore) | Not mentioned | 99%, 2 h | [ |
Stainless steel with 20% Cu | Related to the concentration of released Cu ions | 99.75%, 3h; 99.99%, 6 h | [ |
Copper coating on steel | Not mentioned | 96%, 2 h; 99.2%, 5 h | [ |
CuO coating | Not caused via the leachate, contact between SARS?CoV?2 and CuO is necessary | 99.8%, 30 min | [ |
Cu2O particles bound with polyurethane coated on glass or stainless steel | Not mentioned | 99.9%, 1 h | [ |
CuS impregnated Nylon fibers | Inactivated by solid?state CuS, not Cu2+ | Almost complete protection of cells, 1 h | [ |
Zn2+ embedded polyamide 6.6 (PA66) fibers | Zn2+ inactivate IAV and H1N1 by destabilization of the viral surface proteins | 99%, 1 h | [ |
ZnO particles coatings | Not mentioned | >99.9%, 1 h | [ |
Impregnation of Ag nanoparticles onto fabric | Not mentioned | 99.99%, 2 min | [ |
SiO2?Ag composite immobilized in polyvinyl acetate | Ag NPs generated ROS, enhanced by the plasmon?assisted surface mechanism of SiO2 | 99.05%, 2 min | [ |
Nanostructured Al 6063 alloy surfaces | Not mentioned | No recoverable viable virus, 6 h | [ |
Graphene oxide functionalized polyurethane or cotton | Not mentioned | 99%, 2 h | [ |
Table 1 Summary of literature on inorganic surface with anti-SARS-CoV-2 properties with reported mechanism of action and persistence
Surface/interface | Proposed mechanism of action | Persistence | Ref. |
---|---|---|---|
Cu | Not mentioned | No viable SARS?CoV?2, 4 h | [ |
Cu?coated polypropylene filter | Not mentioned | RdRp and E genes of SARS?CoV?2 were not detected, 1 h | [ |
Polymetal alloy containing 85% Cu(Luminore) | Not mentioned | 99%, 2 h | [ |
Stainless steel with 20% Cu | Related to the concentration of released Cu ions | 99.75%, 3h; 99.99%, 6 h | [ |
Copper coating on steel | Not mentioned | 96%, 2 h; 99.2%, 5 h | [ |
CuO coating | Not caused via the leachate, contact between SARS?CoV?2 and CuO is necessary | 99.8%, 30 min | [ |
Cu2O particles bound with polyurethane coated on glass or stainless steel | Not mentioned | 99.9%, 1 h | [ |
CuS impregnated Nylon fibers | Inactivated by solid?state CuS, not Cu2+ | Almost complete protection of cells, 1 h | [ |
Zn2+ embedded polyamide 6.6 (PA66) fibers | Zn2+ inactivate IAV and H1N1 by destabilization of the viral surface proteins | 99%, 1 h | [ |
ZnO particles coatings | Not mentioned | >99.9%, 1 h | [ |
Impregnation of Ag nanoparticles onto fabric | Not mentioned | 99.99%, 2 min | [ |
SiO2?Ag composite immobilized in polyvinyl acetate | Ag NPs generated ROS, enhanced by the plasmon?assisted surface mechanism of SiO2 | 99.05%, 2 min | [ |
Nanostructured Al 6063 alloy surfaces | Not mentioned | No recoverable viable virus, 6 h | [ |
Graphene oxide functionalized polyurethane or cotton | Not mentioned | 99%, 2 h | [ |
1 | Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G. F., Tan W., New Engl. J. Med., 2020, 382(8), 727—733 |
2 | World Health Organization Coronavirus Disease 2019(COVID⁃19) Pandemic, Numbers at a glance(2022⁃05⁃03), https://www.who.int/emergencies/diseases/novel⁃coronavirus⁃2019 |
3 | Huang H., Fan C., Li M., Nie H. L., Wang F. B., Wang H., Wang R., Xia J., Zheng X., Zuo X., Huang J., ACS Nano, 2020, 14(4), 3747—3754 |
4 | Prather K., Wang C., Schooley R., Science, 2020, 368(6498), 1422—1424 |
5 | Tellier R., Emerging Infect. Dis., 2006, 12(11), 1657—1662 |
6 | Wilson N. M., Norton A., Young F. P., Collins D. W., Anaesthesia, 2020, 75(8), 1086—1095 |
7 | Cui J., Li F., Shi Z. L., Nat. Rev. Microbiol., 2019, 17(3), 181—192 |
8 | Ksiazek T., Erdman D., Goldsmith C., Zaki S., Peret T., Emery S., Tong S., Urbani C., Comer J., Lim W., Rollin P., Dowell S., Ling A., Humphrey C., Shieh W., Guarner J., Paddock C., Rota P., Fields B., Derisi J., Yang J., Cox N., Hughes J., Leduc J., Bellini W., Anderson L., New Engl. J. Med., 2003, 348(20), 1953—1966 |
9 | Drosten C., Günther S., Preiser W., Van Der Werf S., Brodt H., Becker S., Rabenau H., Panning M., Kolesnikova L., Fouchier R., Berger A., Burguière A., Cinatl J., Eickmann M., Escriou N., Grywna K., Kramme S., Manuguerra J., Müller S., Rickerts V., Stürmer M., Vieth S., Klenk H., Osterhaus A., Schmitz H., Doerr H., New Engl. J. Med., 2003, 348(20), 1967—1976 |
10 | Memish Z. A., Mishra N., Olival K. J., Fagbo S. F., Kapoor V., Epstein J. H., Alhakeem R., Durosinloun A., Al Asmari M., Islam A., Kapoor A., Briese T., Daszak P., Al Rabeeah A. A., Lipkin W. I., Emerging Infect. Dis., 2013, 19(11), 1819—1823 |
11 | Haagmans B. L., Al Dhahiry S. H. S., Reusken C. B. E. M., Raj V. S., Galiano M., Myers R., Godeke G. J., Jonges M., Farag E., Diab A., Ghobashy H., Alhajri F., Al⁃Thani M., Al⁃Marri S. A., Al Romaihi H. E., Al Khal A., Bermingham A., Osterhaus A. D. M. E., Alhajri M. M., Koopmans M. P. G., Lancet Infect. Dis., 2014, 14(2), 140—145 |
12 | Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B., Lancet, 2020, 395(10223), 497—506 |
13 | Naqvi A. a. T., Fatima K., Mohammad T., Fatima U., Singh I. K., Singh A., Atif S. M., Hariprasad G., Hasan G. M., Hassan M. I., Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165878 |
14 | Kim D., Lee J. Y., Yang J. S., Kim J. W., Kim V. N., Chang H., Cell, 2020, 181(4), 914—921 |
15 | Walls A. C., Park Y. J., Tortorici M. A., Wall A., Mcguire A. T., Veesler D., Cell, 2020, 181(2), 281—292 |
16 | Wrapp D., Wang N., Corbett K., Goldsmith J., Hsieh C., Abiona O., Graham B., Mclellan J., Science, 2020, 367(6483), 1260—1263 |
17 | Liu J., Sun Y., Qi J., Chu F., Wu H., Gao F., Li T., Yan J., Gao G. F., J. Infect. Dis., 2010, 202(8), 1171—1180 |
18 | Schoeman D., Fielding B. C., Virol. J., 2019, 16(1), 69 |
19 | Kumar S., Paul P., Yadav P., Kaul R., Maitra S. S., Jha S. K., Chaari A., Comput. Biol. Med., 2022, 142, 105231 |
20 | Hoffmann M., Kleine⁃Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., Schiergens T. S., Herrler G., Wu N. H., Nitsche A., Muller M. A., Drosten C., Pohlmann S., Cell, 2020, 181(2), 271—280 |
21 | Li X., Duan G. Y., Zhang W., Shi J. S., Chen J. Y., Chen S. M., Gao S., Ruan J. S., Chinese Journal of Bioinformatics, 2020, 18(2), 103—108 |
李鑫, 段广有, 张伟, 施劲松, 陈嘉源, 陈舜梅, 高山, 阮吉寿. 生物信息学, 2020, 18(2), 103—108 | |
22 | Zhang L., Lin D., Sun X., Curth U., Drosten C., Sauerhering L., Becker S., Rox K., Hilgenfeld R., Science, 2020, 368(6489), 409—412 |
23 | Gao Y., Yan L., Huang Y., Liu F., Zhao Y., Cao L., Wang T., Sun Q., Ming Z., Zhang L., Ge J., Zheng L., Zhang Y., Wang H., Zhu Y., Zhu C., Hu T., Hua T., Zhang B., Yang X., Li J., Yang H., Liu Z., Xu W., Guddat L. W., Wang Q., Lou Z., Rao Z., Science, 2020, 368(6492), 779—782 |
24 | Hamid S., Mir M. Y., Rohela G. K., New Microbes New Infect., 2020, 35, 100679 |
25 | Shereen M. A., Khan S., Kazmi A., Bashir N., Siddique R., J. Adv. Res., 2020, 24, 91—98 |
26 | Eastman R. T., Roth J. S., Brimacombe K. R., Simeonov A., Shen M., Patnaik S., Hall M. D., ACS Cent. Sci., 2020, 6(5), 672—683 |
27 | Deng W., Sun Y., Yao X., Subramanian K., Ling C., Wang H., Chopra S. S., Xu B. B., Wang J. X., Chen J. F., Wang D., Amancio H., Pramana S., Ye R., Wang S., Adv. Sci., 2022, 9(3), e2102189 |
28 | Liao L., Xiao W., Zhao M., Yu X., Wang H., Wang Q., Chu S., Cui Y., ACS Nano, 2020, 14(5), 6348—6356 |
29 | Chen W., Zhang N., Wei J., Yen H. L., Li Y., Build Environ., 2020, 176, 106859 |
30 | Liu J., Liao X., Qian S., Yuan J., Wang F., Liu Y., Wang Z., Wang F. S., Liu L., Zhang Z., Emerging Infect. Dis., 2020, 26(6), 1320—1323 |
31 | van Doremalen N., Bushmaker T., Morris D. H., Holbrook M. G., Gamble A., Williamson B. N., Tamin A., Harcourt J. L., Thornburg N. J., Gerber S. I., Lloyd⁃Smith J. O., de Wit E., Munster V. J., New Engl. J. Med., 2020, 382(16), 1564—1567 |
32 | Chin A. W. H., Chu J. T. S., Perera M. R. A., Hui K. P. Y., Yen H. L., Chan M. C. W., Peiris M., Poon L. L. M., The Lancet Microbe, 2020, 1(1), e10 |
33 | Zhang R., Li Y., Zhang A. L., Wang Y., Molina M. J., Proc. Natl. Acad. Sci., 2020, 117(26), 14857—14863 |
34 | Mittal R., Ni R., Seo J. H., J. Fluid Mech., 2020, 894, F2 |
35 | Javid B., Weekes M. P., Matheson N. J., BMJ, 2020, 369, m1442 |
36 | Bullard J., Dust K., Funk D., Strong J. E., Alexander D., Garnett L., Boodman C., Bello A., Hedley A., Schiffman Z., Doan K., Bastien N., Li Y., Van Caeseele P. G., Poliquin G., Clin. Infect. Dis., 2020, 71(10), 2663—2666 |
37 | Leung N. H. L., Chu D. K. W., Shiu E. Y. C., Chan K. H., Mcdevitt J. J., Hau B. J. P., Yen H. L., Li Y., Ip D. K. M., Peiris J. S. M., Seto W. H., Leung G. M., Milton D. K., Cowling B. J., Nat. Med., 2020, 26(5), 676—680 |
38 | Ge Z. Y., Yang L. M., Xia J. J., Fu X. H., Zhang Y. Z., J. Zhejiang Univ. Sci. B, 2020, 21(5), 361—368 |
39 | Ramakrishnan M. A., World Journal of Virology, 2016, 5(2), 85—86 |
40 | International Organization for Standardization. ISO 18184: Textiles⁃Determination of Antiviral Activity of Textile Products, 2019 |
41 | Watzinger F., Suda M., Preuner S., Baumgartinger R., Ebner K., Baskova L., Niesters H. G., Lawitschka A., Lion T., J. Clin. Microbiol., 2004, 42(11), 5189—5198 |
42 | Vasickova P., Pavlik I., Verani M., Carducci A., Food Environ. Virol., 2010, 2(1), 24—34 |
43 | Rakowska P. D., Tiddia M., Faruqui N., Bankier C., Pei Y., Pollard A. J., Zhang J., Gilmore I. S., Commun. Mater., 2021, 2(1), 53 |
44 | Chaturvedi U. C., Shrivastava R., FEMS Immunol Med. Microbiol., 2005, 43(2), 105—114 |
45 | Zhou J., Hu Z., Zabihi F., Chen Z., Zhu M., Adv. Fiber Mater., 2020, 2(3), 123—139 |
46 | Abdelgawad A. M., Hudson S. M., Rojas O. J., Carbohydr. Polym., 2014, 100, 166—178 |
47 | Simoes D., Miguel S. P., Ribeiro M. P., Coutinho P., Mendonca A. G., Correia I. J., Eur. J. Pharm. Biopharm., 2018, 127, 130—141 |
48 | Orlowski P., Kowalczyk A., Tomaszewska E., Ranoszek⁃Soliwoda K., Wegrzyn A., Grzesiak J., Celichowski G., Grobelny J., Eriksson K., Krzyzowska M., Viruses, 2018, 10(10), 524 |
49 | Du T., Liang J., Dong N., Lu J., Fu Y., Fang L., Xiao S., Han H., ACS Appl. Mater. Interfaces, 2018, 10(5), 4369—4378 |
50 | Tremiliosi G. C., Simoes L. G. P., Minozzi D. T., Santos R. I., Vilela D. C. B., Durigon E. L., Machado R. R. G., Medina D. S., Ribeiro L. K., Rosa I. L. V., Assis M., Andrés J., Longo E., Freitas⁃Junior L. H., bioRxiv, 2020, doi:https://doi.org/10.1101/2020.06.26.152520 |
51 | Assis M., Simoes L. G. P., Tremiliosi G. C., Coelho D., Minozzi D. T., Santos R. I., Vilela D. C. B., Santos J. R. D., Ribeiro L. K., Rosa I. L. V., Mascaro L. H., Andres J., Longo E., Nanomaterials, 2021, 11(3), 638 |
52 | Borkow G., Gabbay J., Curr. Med. Chem., 2005, 12, 2163—2175 |
53 | Dollwet H. H. A., Sorenson J. R. J., J. Trace Elem. Med. Biol., 1985, 2, 80—87 |
54 | Karlstrom A. R., Levine R. L., Proc. Natl. Acad. Sci., 1991, 88, 5552—5556 |
55 | Karlström A. R., Shames B. D., Levine R. L., Arch. Biochem. Biophys, 1993, 304, 163—169 |
56 | Raoul C., Pye Q. N., Floyd R. A., Free Radic. Biol. Med., 1995, 18, 265—269 |
57 | Stohs S. J., Bagchi D., Free Radic. Biol. Med., 1995, 18, 321—336 |
58 | Liu L. T., Chin A. W. H., Yu P., Poon L. L. M., Huang M. X., Chem. Eng. J., 2021, 433, 133783 |
59 | Hosseini M., Chin A. W. H., Behzadinasab S., Poon L. L. M., Ducker W. A., ACS Appl. Mater. Interfaces, 2021, 13(5), 5919—5928 |
60 | Behzadinasab S., Chin A., Hosseini M., Poon L., Ducker W. A., ACS Appl. Mater. Interfaces, 2020, 12(31), 34723—34727 |
61 | Hewawaduge C., Senevirathne A., Jawalagatti V., Kim J. W., Lee J. H., Environ. Res., 2021, 196, 110947 |
62 | Korant B., Butterworth B., J. Virol., 1976, 18(1), 298—306 |
63 | Geist F. C., Bateman J. A., Hayden F. G., . Antimicrob. Agents Chemother., 1987, 31(4), 622—624 |
64 | Houston D. M. J., Bugert J. J., Denyer S. P., Heard C. M., PLoS One, 2017, 12(6), e0179291 |
65 | Wu D., Ensinas A., Verrier B., Primard C., Cuvillier A., Champier G., Paul S., Delair T., Mol. Pharmacol., 2016, 13(9), 3279—3291 |
66 | Kaushik N., Anang S., Ganti K. P., Surjit M., DNA Cell Biol., 2018, 37(7), 593—599 |
67 | Yuasa K., Naganuma A., Sato K., Ikeda M., Kato N., Takagi H., Mori M., Liver Int., 2006, 26(9), 1111—1118 |
68 | Ghaffari H., Tavakoli A., Moradi A., Tabarraei A., Bokharaei⁃Salim F., Zahmatkeshan M., Farahmand M., Javanmard D., Kiani S. J., Esghaei M., Pirhajati⁃Mahabadi V., Monavari S. H., Ataei⁃Pirkooh A., J. Biomed. Sci., 2019, 26(1), 70 |
69 | Hulisz D., J. Am. Pharm. Assoc., 2004, 44(5), 594—603 |
70 | Cordingley M., Register R., Callahan P., Garsky V., Colonno R., J. Virol., 1989, 63(12), 5037—5045 |
71 | te Velthuis A. J., van Den Worm S. H., Sims A. C., Baric R. S., Snijder E. J., van Hemert M. J., PLoS Pathog., 2010, 6(11), e1001176 |
72 | Wei Z., Burwinkel M., Palissa C., Ephraim E., Schmidt M. F., Vet. Microbiol., 2012, 160(3/4), 468—472 |
73 | Hosseini M., Behzadinasab S., Chin A. W. H., Poon L. L. M., Ducker W. A., ACS Biomater. Sci. Eng., 2021, 7(11), 5022—5027 |
74 | Gopal V., Nilsson⁃Payant B. E., French H., Siegers J. Y., Yung W. S., Hardwick M., te Velthuis A. J. W., ACS Appl. Mater. Interfaces, 2021, 13(26), 30317—30325 |
75 | Yu X., Wang S., Zhang X., Qi A., Qiao X., Liu Z., Wu M., Li L., Wang Z. L., Nano Energy, 2018, 46, 29—38 |
76 | Regmi C., Joshi B., Ray S. K., Gyawali G., Pandey R. P., Front. Chem., 2018, 6, 33 |
77 | Tong Y., Shi G., Hu G., Hu X., Han L., Xie X., Xu Y., Zhang R., Sun J., Zhong J., Chem. Eng. J., 2021, 414, 128788 |
78 | Li Q., Yin Y., Cao D., Wang Y., Luan P., Sun X., Liang W., Zhu H., ACS Nano, 2021, 15(7), 11992—12005 |
79 | He J., Zhu X., Qi Z., Wang C., Mao X., Zhu C., He Z., Li M., Tang Z., ACS Appl. Mater. Interfaces, 2015, 7(9), 5605—5611 |
80 | Shi L., Chen J., Teng L., Wang L., Zhu G., Liu S., Luo Z., Shi X., Wang Y., Ren L., Small, 2016, 12(31), 4165—4184 |
81 | Anand A., Unnikrishnan B., Wei S. C., Chou C. P., Zhang L. Z., Huang C. C., Nanoscale Horiz., 2019, 4(1), 117—137 |
82 | Donskyi I. S., Nie C., Ludwig K., Trimpert J., Ahmed R., Quaas E., Achazi K., Radnik J., Adeli M., Haag R., Osterrieder K., Small, 2021, 17(11), e2007091 |
83 | Losada⁃Garcia N., Rodriguez⁃Oliva I., Simovic M., Bezbradica D. I., Palomo J. M., ACS Omega, 2020, 5(9), 4362—4369 |
84 | Sametband M., Kalt I., Gedanken A., Sarid R., ACS Appl. Mater. Interfaces, 2014, 6(2), 1228—1235 |
85 | Ziem B., Thien H., Achazi K., Yue C., Stern D., Silberreis K., Gholami M. F., Beckert F., Groger D., Mulhaupt R., Rabe J. P., Nitsche A., Haag R., Adv. Healthc. Mater., 2016, 5(22), 2922—2930 |
86 | Ziem B., Rahn J., Donskyi I., Silberreis K., Cuellar L., Dernedde J., Keil G., Mettenleiter T. C., Haag R., Macromol. Biosci., 2017, 17(6), 1600499 |
87 | Qi Z., Bharate P., Lai C. H., Ziem B., Bottcher C., Schulz A., Beckert F., Hatting B., Mulhaupt R., Seeberger P. H., Haag R., Nano Lett., 2015, 15(9), 6051—6057 |
88 | Liu Z., Zhang W., Sun B., Ma Y., He M., Pan Y., Wang F., Chem. Sci., 2021, 12(4), 1451—1457 |
89 | Donskyi I. S., Azab W., Cuellar⁃Camacho J. L., Guday G., Lippitz A., Unger W. E. S., Osterrieder K., Adeli M., Haag R., Nanoscale, 2019, 11(34), 15804—15809 |
90 | Tu Y., Lv M., Xiu P., Huynh T., Zhang M., Castelli M., Liu Z., Huang Q., Fan C., Fang H., Zhou R., Nat. Nanotechnol., 2013, 8(8), 594—601 |
91 | Titov A. V., Král P., Pearson R., ACS Nano, 2010, 4(1), 229—234 |
92 | Ye S., Shao K., Li Z., Guo N., Zuo Y., Li Q., Lu Z., Chen L., He Q., Han H., ACS Appl. Mater. Interfaces, 2015, 7(38), 21571—21579 |
93 | Hu W., Peng C., Luo W., Lv M., Li X., Li D., Huang Q., Fan C., ACS Nano, 2010, 4(7), 4317—4323 |
94 | de Maio F., Palmieri V., Babini G., Augello A., Palucci I., Perini G., Salustri A., Spilman P., De Spirito M., Sanguinetti M., Delogu G., Rizzi L. G., Cesareo G., Soon⁃Shiong P., Sali M., Papi M., iScience, 2021, 24(7), 102788 |
95 | Goswami M., Yadav A. K., Chauhan V., Singh N., Kumar S., Das A., Yadav V., Mandal A., Tiwari J. K., Siddiqui H., Ashiq M., Sathish N., Kumar S., Biswas D., Srivastava A. K., J. Sci.⁃Adv. Mater. Dev., 2021, 6(3), 407—414 |
96 | Zhong H., Zhu Z., Lin J., Cheung C. F., Lu V. L., Yan F., Chan C. Y., Li G., ACS Nano, 2020, 14(5), 6213—6221 |
97 | Shan X., Zhang H., Liu C., Yu L., Di Y., Zhang X., Dong L., Gan Z., ACS Appl. Mater. Interfaces, 2020, 12(50), 56579—56586 |
98 | Grce M., Pavelić K., Microporous Mesoporous Mater., 2005, 79(1—3), 165—169 |
99 | Cui J., Yeasmin R., Shao Y., Zhang H., Zhang H., Zhu J., Ind. Eng. Chem. Res., 2019, 59(2), 751—762 |
100 | Chen S., Popovich J., Zhang W., Ganser C., Haydel S. E., Seo D. K., RSC Adv., 2018, 8(66), 37949—37957 |
101 | de Vasconcellos A., Laurenti B. J., Miller A. H., da Silva D. A., de Moraes F. R., Aranda D. A. G., Nery J. G., Microporous Mesoporous Mater., 2015, 214, 166—180 |
102 | Bright K. R., Sicairos⁃Ruelas E. E., Gundy P. M., Gerba C. P., Food Environ. Virol., 2008, 1(1), 37—41 |
103 | Imai K., Ogawa H., Bui V. N., Inoue H., Fukuda J., Ohba M., Yamamoto Y., Nakamura K., Antivir. Res., 2012, 93(2), 225—233 |
104 | Yu L. S., Li D., Xiao L. P., Fan J., Chem. J. Chinese Universities, 2021, 42(1), 311—320 |
余丽莎, 李丹, 肖丽萍, 范杰. 高等学校化学学报, 2021, 42(1), 311—320 | |
105 | Jung S., Yang J. Y., Byeon E. Y., Kim D. G., Lee D. G., Ryoo S., Lee S., Shin C. W., Jang H. W., Kim H. J., Lee S., Polymers 2021, 13(9), 1367 |
106 | Mantlo E. K., Paessler S., Seregin A., Mitchell A., Antimicrob. Agents Chemother., 2021, 65(7), e0139020 |
107 | Hutasoit N., Kennedy B., Hamilton S., Luttick A., Rahman Rashid R. A., Palanisamy S., Manuf. Lett., 2020, 25, 93—97 |
108 | Tremiliosi G. C., Simoes L. G. P., Minozzi D. T., Santos R. I., Vilela D. C. B., Durigon E. L., Machado R. R. G., Medina D. S., Ribeiro L. K., Rosa I. L. V., Assis M., Andrés J., Longo E., Freitas⁃Junior L. H., Jpn. J. Med. Sci., 2020, 1(4), 47—58 |
109 | Hasan J., Pyke A., Nair N., Yarlagadda T., Will G., Spann K., Yarlagadda P. K. D. V., ACS Biomater. Sci. Eng., 2020, 6(9), 4858—4861 |
110 | Kwok Y. L., Gralton J., Mclaws M. L., Am. J. Infect. Control, 2015, 43(2), 112—114 |
[1] | CHEN Zhonghui, LI Jinqiu, LIN Wei, YU Liumin, TU Haijian, CHEN Yu, CAI Zongwei, LIN Zhenyu. Multicolor Immunodiagnostic for Semiquantitative Visual Detection Syndrome Coronavirus 2 Specific Antibody: A Prospect Strategy for On-site COVID-19 Therapeutic Process Monitoring [J]. Chem. J. Chinese Universities, 2021, 42(11): 3509. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||