Chem. J. Chinese Universities ›› 2019, Vol. 40 ›› Issue (4): 815.doi: 10.7503/cjcu20180718
• Polymer Chemistry • Previous Articles Next Articles
YAN Shifeng*(), WANG Weidong, REN Jie, TENG Changchang, YIN Jingbo*(
)
Received:
2018-10-22
Online:
2019-12-24
Published:
2018-12-24
Contact:
YAN Shifeng,YIN Jingbo
E-mail:yansf@staff.shu.edu.cn;jbyin@oa.shu.edu.cn
Supported by:
CLC Number:
TrendMD:
YAN Shifeng,WANG Weidong,REN Jie,TENG Changchang,YIN Jingbo. Biomimetic Mineralization of Hydroxyapatite Mediated by Poly(L-glutamic acid) Hydrogels in Simulated Body Fluid†[J]. Chem. J. Chinese Universities, 2019, 40(4): 815.
Sample | Ion concentration/(mmol·L-1) | |||||||
---|---|---|---|---|---|---|---|---|
Na+ | K+ | Ca2+ | Mg2+ | HC | Cl- | HP | S | |
Plasma | 142.0 | 5.0 | 2.5 | 1.5 | 27.0 | 103.0 | 1.0 | 0.5 |
1.0SBF | 142.0 | 5.0 | 2.5 | 1.5 | 4.2 | 148.0 | 1.0 | 0.5 |
1.5SBF | 213.1 | 7.5 | 3.8 | 2.3 | 6.3 | 221.9 | 1.5 | 0.8 |
Table 1 Comparation of the ion concentration(mmol/L) in human plasma, 1.0SBF and 1.5SBF
Sample | Ion concentration/(mmol·L-1) | |||||||
---|---|---|---|---|---|---|---|---|
Na+ | K+ | Ca2+ | Mg2+ | HC | Cl- | HP | S | |
Plasma | 142.0 | 5.0 | 2.5 | 1.5 | 27.0 | 103.0 | 1.0 | 0.5 |
1.0SBF | 142.0 | 5.0 | 2.5 | 1.5 | 4.2 | 148.0 | 1.0 | 0.5 |
1.5SBF | 213.1 | 7.5 | 3.8 | 2.3 | 6.3 | 221.9 | 1.5 | 0.8 |
Fig.2 XRD patterns of PLGA hydrogels after soaking in 1.5SBF for different time(A) and comparison of XRD patterns of PLGA hydrogels after soaking in 1.0SBF and 1.5SBF(B)
Fig.5 SEM images of the mineralized surface of PLGA hydrogels after soaking in 1.0SBF and 1.5SBF for different time (A—F) 2, 6, 10, 14, 21 and 28 d in 1.0SBF; (A'—F') 2, 6, 10, 14, 21 and 28 d in 1.5SBF; (G, H) different magnification in 1.5SBF for 14 d.
Fig.7 TGA curves of PLGA hydrogels after mineralization (A) PLGA hydrogels after soaking in 1.5SBF for different time; (B) comparison of TGA curves for PLGA hydrogels after soaking in 1.0SBF and 1.5SBF; (C) percentage of mass increase with immersion time for PLGA hydrogels after soaking in 1.0SBF and 1.5SBF.
Fig.8 Rheological properties of PLGA hydrogels after mineralization(A) Storage modulus(G') or loss modulus(G″); (B) complex viscosity |η*| of PLGA hydrogels after soaking in 1.5SBF for different time.
Fig.9 SEM images of PLGA hydrogels before(A) and after soaking in 1.5SBF for 14 d(B) and the ASCs proliferated on PLGA hydrogel(C) and mineralized hydrogel for 3 d(D)
Fig.10 CLSM images of the ASCs-seeded PLGA hydrogels(A—C) and the ASCs-seeded mineralized hydrogel(D—F) at 1 d(A, D), 7 d(B, C) and 14 d(C, F) The living cells were stained with FDA(green) and the dead cell nuclei were stained with PI(red).
[1] | Chirila T. V., Zainuddin., React. Funct.Polym.,2007, 67(3), 165—172 |
[2] | Song J., Saiz E., Bertozzi C. R.,J. Am. Chem.Soc.,2003, 125(5), 1236—1243 |
[3] | Webster T. J., Ergun C., Doremus R. H., Siegel R. W., Bizios R., Biomaterials,2000, 21(17), 1803—1810 |
[4] | Weiner S., Wagner H. D., Annu. Rev. Mater.Sci.,1998, 28, 271—298 |
[5] | Miyazaki T., Mukai J., Ishida E., Ohtsuki C., Biomed. Mater.Eng.,2013, 23(5), 339—347 |
[6] | Barrera D. A., Zylstra E., Lansbury P. T., Langer R., J. Am. Chem.Soc.,1993, 115(23), 11010—11011 |
[7] | Turco G., Marsich E., Bellomo F., Semeraro S., Donati I., Brun F., Grandoifo M., Accardo A., Paoletti S., Biomacromolecules,2009, 10(6), 1575—1583 |
[8] | Feng W., Feng S., Tang K., He X., Jing A., Liang G., J. Alloys Compd.,2017, 693, 482—489 |
[9] | Shu X., Shi Q., Feng J., Xie X., Chen Y., J. Mater.Sci.,2014, 49(22), 7742—7749 |
[10] | Luo Y., Lode A., Wu C., Chang J., Gelinsky M., ACS Appl. Mater.Interfaces,2015, 7(12), 6541—6549 |
[11] | Wang G., Zheng L., Zhao H., Miao J., Sun C., Liu H., Huang Z., Yu X., Wang J., Tao X., ACS Appl. Mater.Interfaces,2011, 3(5), 1692—1701 |
[12] | Gao X., Song J., Ji P., Zhang X., Li X., Xu X., Wang M., Zhang S., Deng Y., Deng F., Wei S., ACS Appl. Mater.Interfaces,2016, 8(5), 3499—3515 |
[13] | Yu S.H., Bio-inspired Crystal Growth by Synthetic Templates, In: Naka K. Ed., Biominer. Ⅱ, Springer, Berlin Heidelberg, 2006, 79—118 |
[14] | Hu C., Zhang L., Wei M., ACS Biomater. Sci.Eng.,2015, 1(8), 669—676 |
[15] | Zhu W., Lin J., Cai C., J. Mater.Chem.,2012, 22(9), 3939—3947 |
[16] | Turner J. S., Redpath G. T., Humphries J. E., Gonias S. L., Vandenberg S. R., Biochem.J.,1994, 297(1), 175—179 |
[17] | Ganss B., Kim R. H., Sodek J., Crit. Rev. Oral. Biol. Med.,1999, 10(1), 79—98 |
[18] | George A., Veis A., Chem.Rev.,2008, 108(11), 4670—4693 |
[19] | Coleman R. J., Jack K. S., Perrier S., Grøndahl L., Cryst. Growth Des.,2013, 13(10), 4252—4259 |
[20] | Liu Y., Li N., Qi Y., Dai L., Bryan T. E., Mao J., Pashley D. H., Tay F. R., Adv.Mater.,2011, 23(8), 975—980 |
[21] | Wang Y., Azaïs T., Robin M., Vallee A., Catania C., Legriel P., Pehau-Arnaudet G., Babonneau F., Giraud-Guille Nat. Mater.,2012, 11(8), 724—733 |
[22] | Li Y., Chen X., Fok A., Rodriguezcabello J. C., Aparicio C., ACS Appl. Mater.Interfaces,2015, 7(46), 25784—25792 |
[23] | Li C., Adv. Drug. Deliv.Rev., 2012, 54(5), 695—713 |
[24] | Song Z., Yin J., Luo K., Zheng Y., Yang Y., Li Q., Yan S., Chen X.,Macromol.Biosci.,2009, 9(3), 268—278 |
[25] | Qu X., Cui W., Yang F., Min C., Shen H., Bei J., Wang S., Biomaterials,2007, 28(1), 9—18 |
[26] | Yang Q., Peng J., Guo Q., Huang J., Zhang L., Yao J., Yang F., Wang S., Xu W., Wang A., Lu S., Biomaterials,2008, 29(15), 2378—2397 |
[27] | Cui L., Wu Y., Cen L., Zhou H., Yin S., Liu G., Liu W., Cao Y., Biomaterials,2009, 30(14), 2683—2693 |
[28] | Nakajima N., Ikada Y., Bioconjug.Chem.,1995, 6(1), 123—130 |
[29] | Tsai S., Hsieh C., Hsieh C., Wang D., Huang L., Lai J., Hsieh H., J. Appl. Polym.Sci.,2007, 105(4), 1774—1785 |
[30] | Nakajima N., Ikada Y., Bioconjug.Chem.,1995, 6(1), 123—130 |
[31] | Habibovic P., Barrère F., Blitterswijk C. A., Groot K. D., Layrolle P., J. Am. Ceram.Soc.,2004, 85(3), 517—522 |
[32] | Kokubo T., Hanakawa M., Kawashita M., Minoda M., Beppu T., Miyamoto T., Nakamura T., Biomaterials,2004, 25(18), 4485—4488 |
[33] | Ryu J., Ku S. H., Lee H., Park C., Adv. Funct.Mater.,2010, 20(13), 2132—2139 |
[34] | Dalby M. J., Gadegaard N., Tare R., Andar A., Riehle M. O., Herzyk P., Wilkinson C. D., Oreffo R. O.,Nat.Mater.,2007, 6(12), 997—1003 |
[35] | Webster T. J., Siegel R. W., Bizios R., Biomaterials,1999, 20(13), 1221—1227 |
[36] | Chou Y., Chiou W., Xu Y., Dunn J. C., Wu B. M., Biomaterials,2004, 25(22), 5323—5331 |
[37] | Yin J., Luo K., Chen X., Khutoryanskiv V. V., Carbohydr.Polym.,2006, 63(2), 238—244 |
[38] | Liu G., Zhao D., Tomsia A. P., Minor A. M., Song X., Saiz E., J. Am. Chem.Soc.,2009, 131(29), 9937—9939 |
[39] | Li P., Ohtsuki C., Kokubo T., Nakanishi K., Soga N., Nakamura T., Yamamuro T., J. Am. Ceram.Soc.,1992, 75(8), 2094—2097 |
[40] | Tanahashi M., Matsuda T.,J. Biomed. Mater.Res.,1997, 34(3), 305—315 |
[41] | Kawai T., Ohtsuki C., Kamitakahara M., Miyazaki T., Tanihara M., Sakaguchi Y., Konagaya S., Biomaterials,2004, 25(19), 4529—4534 |
[42] | Toworfe G. K., Composto R. J., Shapiro I. M., Ducheyne P., Biomaterials,2006, 27(4), 631—642 |
[43] | Kim C. W., Kim S. E., Kim Y. W., Lee H. J., Choi H. W., Chang J. H., Choi J., Kim K. J., Shim K. B., Jeong Y. K., Lee S. C., J. Mater.Res.,2009, 24(1), 50—57 |
[44] | Kawashita M., Nakao M., Minoda M., Kim H. M., Beppu T., Miyamoto K. T., Nakamura T., Biomaterials,2003, 24(14), 2477—2484 |
[45] | Jiao Y., Gyawali D., Stark J. M., Akcora P., Nair P., Tran R. T., Yang J., Soft Matter,2012, 8(5), 1499—1507 |
[46] | Tang Y., Du Y., Li Y., Wang X., Hu X., J. Biomed. Mater. Res. A,2009, 91A(4), 953—963 |
[47] | Heinemann S., Heinemann C., Jäger M., Neunzehn J., Wiesmann H. P., Hanke T., ACS Appl. Mater.Interfaces,2011, 3(11), 4323—4331 |
[48] | Fan H., Hu Y., Zhang C., Li X., Lv R., Qin L., Zhu R., Biomaterials,2006, 27(26), 4573—4580 |
[49] | Tan H., Ramirez C. M., Miljkovic N., Li H., Rubin J. P., Marra K. G., Biomaterials,2009, 30(36), 6844—6853 |
[50] | Yan S., Zhang K., Liu Z., Zhang X., Gan L., Cao B., Chen X., Cui L., Yin J., J. Mater. Chem.B,2013, 1(11), 1541—1553 |
[51] | Cao B., Yan S., Zhang K., Song Z., Cao T., Chen X., Cui L., Yin J., Macromol.Biosci.,2011, 11(7), 970—977 |
[52] | Chang C., Peng N., He M., Teramoto Y., Nishio Y., Zhang L., Carbohydr.Polym.,2013, 91(1), 7—13 |
[1] | LI Rui, SUN Xiaogang, ZOU Jingyi, HE Qiang. High Performance Lithium-sulfur Battery with Hydroxyapatite Nanowire Composite Interlayer [J]. Chem. J. Chinese Universities, 2020, 41(8): 1866. |
[2] | LI Xiao,XING Lisha,ZHAO Wanjun,WANG Yongzhao,ZHAO Yongxiang. Preparation and Characterization of Pd-Cu/hydroxyapatite Catalyst and Its Catalytic Performance for Room-temperature CO Oxidation in Humid Circumstances† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1600. |
[3] | WANG Ruanfeng,YAN Shifeng,HU Zhen,YIN Jingbo. Preparation and Properties of CS/nHA Porous Composite Scaffold Based on In-situ Precipitation Method† [J]. Chem. J. Chinese Universities, 2019, 40(5): 1080. |
[4] | HE Yangyang,LI Yi,LI Baozong,YANG Yonggang. Biomimetic Mineralization at a Dilute Concentration and Application in Enantioseparation† [J]. Chem. J. Chinese Universities, 2019, 40(2): 393. |
[5] | DU Jingjing, HUANG Di, WEI Yan, LIAN Xiaojie, HU Yinchun, WANG Kaiqun, LIU Yang, CHEN Weiyi. Preparation and Cytocompatibility of Hydroxyapatite/glyceride Based olyurethane Porous Scaffolds† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1580. |
[6] | YAN Peng-Tao, LI Wen-Ke, WANG Yong-Peng, ZHU Ye, ZHANG Hai-Bo, JIANG Zhen-Hua. Preparation and Properties of Bioactivite Coating on Poly(ether ether ketone) Composite [J]. Chem. J. Chinese Universities, 2013, 34(7): 1782. |
[7] | ZHANG Ding-Lin, FU Hai-Yan, ZHAO Xian-Ying, ZHAO Hua-Wen, CHEN Hua, LIU Yi-Min, LI Xian-Jun. HRhCO(TPPTS)3/HAP Hydroformylate 1-Hexene High Selectivity and Special Isomerization Performance [J]. Chem. J. Chinese Universities, 2012, 33(08): 1835. |
[8] | ZHANG Jing-Zhe, LI Dong-Dong, LIU Gui-Feng, WU Qiong, WANG Jin-Cheng. In vitro Evaluation of Antibacterial and Osteogenic Properties and Synthesis of Mesoporous Hydroxyapatite/Chitosan Composite Loaded with Vancomycin as a Drug Delivery [J]. Chem. J. Chinese Universities, 2012, 33(02): 219. |
[9] | ZHANG Peng, YANG Zhao-Yu, QIU Shu-Xuan, DING Ke-Yi, LUO Jian-Bin, XIE Xing-Yi. Synthesis and Characterization of Poly(ethylene glycol)/hydroxyapatite Hybrid Nanomaterials [J]. Chem. J. Chinese Universities, 2012, 33(01): 22. |
[10] | WANG Lin, LI Chun-Yan, HE Pan, FU Li, ZHOU Yan-Min*, CHEN Xue-Si. Preparation and Bioactivities of PLGA/Nano-hydroxyapatite Scaffold Containing Chitosan Microspheres for Controlled Delivery of Mutifuncational Peptide-adrenomedullin [J]. Chem. J. Chinese Universities, 2011, 32(7): 1622. |
[11] | WU Hai-Tao, YU Ting, ZHU Qing-San*, JIAO Zi-Xue, WEI Yan, ZHANG Pei-Biao*, CHEN Xue-Si. Preparation and Osteogenesis Activities of Electroactive Biodegradable Nanocomposites PAP/op-HA/PLGA [J]. Chem. J. Chinese Universities, 2011, 32(5): 1181. |
[12] | WEI Jun-Chao*, MA Li-Li, DAI Yan-Feng, CHEN Yi-Wang, ZHANG Pei-Biao, CUI Yi, CHEN Xue-Si*. Crystallization Behavior of Modified Hydroxyapatite/Poly(L-lactide) Nanocomposites [J]. Chem. J. Chinese Universities, 2011, 32(11): 2674. |
[13] | WANG Li, ZUO Yi*, ZOU Qin, LI Yu-Bao. Effect of Composition on Physical\|chemical Properties and Biological Properties of Hydroxyapatite/Aliphatic Polyurethane Scaffolds for Bone Tissue Engineering [J]. Chem. J. Chinese Universities, 2011, 32(10): 2453. |
[14] | SHAO Feng-Wei, CAI Yu-Rong, YAO Ju-Ming*. Porous Hydroxyapatite Nanoparticles as a Carrier of Ascorbic Acid [J]. Chem. J. Chinese Universities, 2010, 31(6): 1093. |
[15] | XUE Bo SHI YunFeng HE ShuMei LI LanYing GUO ZhenZhao ZHANG LanLan LI Hong. Induced Synthesis of Monoclinic Hydroxyapatite by Chitosan and Structure Characterization [J]. Chem. J. Chinese Universities, 2010, 31(12): 2339. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||