Chem. J. Chinese Universities ›› 2018, Vol. 39 ›› Issue (3): 537.doi: 10.7503/cjcu20170342
• Physical Chemistry • Previous Articles Next Articles
CHEN Xiaofei, LIU Zhaoyang, LEI Yang, FAN Baoan*(), GUO Fen*(
)
Received:
2017-06-05
Online:
2018-03-10
Published:
2018-01-23
Contact:
FAN Baoan,GUO Fen
E-mail:fanbaoan@wust.edu.cn;guofen@wust.edu.cn
Supported by:
CLC Number:
TrendMD:
CHEN Xiaofei, LIU Zhaoyang, LEI Yang, FAN Baoan, GUO Fen. Preparation of Ni@MWCNTs Anode Catalyst and Its Application in Direct Urea(Urine) Fuel Cell†[J]. Chem. J. Chinese Universities, 2018, 39(3): 537.
Fig.2 SEM image of Ni@MWCNTs and an overlay of EDS-mappings(the framed area)(A), EDS-mapping of single Ni element(B) and C element(C) and EDS pattern of Ni@MWCNTs(D)
Fig.4 Plots of Ni loading vs. deposition time(A) and CV curves in 3.0 mol/L KOH+0.33 mol/L urea under different deposition time(scan rate: 10 mV/s)(B)Inset of (B) shows the change of peak current density normalized by Ni loading with cleposition time.
Fig.6 CV curves of Ni/MWCNTs electrode in different concentrations of KOH(A), KOH+0.33 mol/L urea solutions(B), 3.0 mol/L KOH with 0.33 mol/L urea and without urea(C) and Nyquist plots in different concentrations of KOH+0.33 mol/L urea solutions(D)Scan rate/(mV·s-1): (A) 50, (B), (C) 10. c(KOH)/(mol·L-1): a. 1.0; b. 3.0; c. 5.0.
Fig.7 Nyquist plots(A) and choronoamperotric curves(B) of Ni@MWCNTs electrode in 3.0 mol/L KOH+0.33 mol/L urea and plots of Rct vs. potentials(a) and current density at 1000 s vs. potentials(b)(C)
Fig.9 LSV curves of anode, cathode and whole cell(A), LSV curves of whole cell with and without urea and P-j curve of whole cell with urea(B), LSV(C) and P-j(D) curves of urine fuel cell with and without 0.7 mol/L KOH at scan rate of 20 mV/s
[1] | Xie W. J., Li L., Li Q. Y., Zhao L. Y., Wu M., Feng C., J. Yangtze River Sci. Res. Inst., 2015, 32(6), 49—52 |
(谢雯静, 林莉, 李青云, 赵良元, 吴敏, 冯璁.长江科学院院报,2015, 32(6), 49—52) | |
[2] | Jara C. C., Giulio S. D., Fino D., Spinelli P., J. Appl. Electrochem., 2008, 38(7), 915—922 |
[3] | Lan R., Tao S., Irvine J. T. S., Energy Environ. Sci., 2010, 3(4), 438—441 |
[4] | Yan W., Wang D., Botte G. G., Appl. Catal. B, 2012, 127, 221—226 |
[5] | Nguyen N. S., Yoon H. H., Appl. Catal. B, 2016, 236, 304—310 |
[6] | Zhu X., Dou X., Dai J., An X., Guo Y., Zhang L., Tao S., Zhao J., Chu W., Zeng X. C., Angew. Chem. Int. Ed., 2016, 55(40), 12465—12469 |
[7] | Boggs B. K., King R. L., Botte G. G., Chem. Commun., 2009, 32, 4859—4861 |
[8] | Wang D., Yan W., Vijapur S. H., Botte G. G., J. Power Sources, 2012, 217, 498—502 |
[9] | Yao Y., Huo K., Hu L., Liu N., Cha J. J., McDowell M. T., Chu P. K., Cui Y., ACS Nano, 2011, 5(10), 8346—8351 |
[10] | Seghiouer A., Chevalet J., Barhoun A., Lantelme F., J. Electroanal. Chem., 1998, 442(1), 113—123 |
[11] | Abdel Rahim M. A., Abdel Hameed R. M., Khalil M. W., J. Power Sources, 2004, 134(2), 160—169 |
[12] | Medway S. L., Lucas C. A., Kowal A., Nichols R. J., Johnson D., J. Electroanal. Chem., 2006, 587(1), 172—181 |
[13] | Hao W. X., Li X. S., Zhang Y. Q., Yu H. Y., Li Z. Q., Chem. J. Chinese Universities, 2017, 38(2), 261—266 |
(赫文秀, 李兴盛, 张永强, 于慧颖, 李子庆.高等学校化学学报,2017, 38(2), 261—266) | |
[14] | Prieto P., Nistor V., Nouneh K., Oyama M., Abd-Lefdil M., Diaz R., Appl. Surf. Sci., 2012, 258(22), 8807—8813 |
[15] | Hu Y. J., Huang M. D., Chen C. Y., Zhang C. L., Chem. J. Chinese Universities, 2016, 37(3), 468—474 |
(胡耀娟, 黄梦丹, 陈昌云, 张长丽.高等学校化学学报,2016, 37(3), 468—474) | |
[16] | Jia D., Li F., Sheng L., Ren Q., Dong S., Xu S., Mu Y., Miao Y., Electrochem. Commun., 2011, 13(10), 1119—1122 |
[17] | Rahim M. A., Hameed R. A., Khalil M. W., J. Power Sources, 2014, 134(2), 160—169 |
[18] | Wang D., Botte G. G., ECS Electrochem. Lett., 2014, 3(9), H29—H32 |
[19] | Cai G. X., Guo J. W., Wang J., Li S., J. Power Sources, 2015, 276, 279—290 |
[20] | Han L., Ju H., Xu Y., Int. J. Hydrogen Energy, 2012, 37(20), 15156—15163 |
[21] | Otomo J., Li X., Kobayashi T., Wen C. J., Nagamoto H., Takahashi H., J. Electroanal. Chem., 2004, 573(1), 99—109 |
[22] | Ojani R., Hasheminejad E., Raoof J. B., Int. J. Hydrogen Energy, 2014, 39(15), 8194—8203 |
[23] | Daramola D. A., Singh D., Botte G. G., J. Phys. Chem. A, 2010, 114(43), 11513—11521 |
[24] | Miley G. H., Luo N., Mather J., Burton R., Hawkins G., Gu L., Byrd E., Gimlin R., Shrestha P. J., Benavides G., J. Power Sources, 2007, 165(2), 509—516 |
[25] | Lao S. J., Qin H. Y., Ye L. Q., Liu B. H., Li Z. P., J. Power Sources, 2010, 195(13), 4135—4138 |
[26] | Karak T., Bhattacharyya P., Resour. Conserv. Recycl., 2011, 55(4), 400—408 |
[1] | QIU Xinsheng, WU Qin, SHI Daxin, ZHANG Yaoyuan, CHEN Kangcheng, LI Hansheng. Preparation and High Temperature Fuel Cell Performance of Ionic Crosslinked Sulfonated Polyimides for Proton Exchange Membranes [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220140. |
[2] | YANG Lijun, YU Yang, ZHANG Lei. Construction of Dual-functional 2D/3D Hydrid Co2P-CeO x Heterostructure Integrated Electrode for Electrocatalytic Urea Oxidation Assisted Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220082. |
[3] | CHEN Changli, MI Wanliang, LI Yujing. Research Progress of Single Atom Catalysts in Electrochemical Hydrogen Cycling [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220065. |
[4] | LUO Bian, ZHOU Fen, PAN Mu. Study on Preparation and Accessibility of Hierarchical Porous Carbon Supported Platinum Catalyst [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210853. |
[5] | LIU Jie, LI Jinsheng, BAI Jingsen, JIN Zhao, GE Junjie, LIU Changpeng, XING Wei. Constructing a Water-blocking Interlayer Containing Sulfonated Carbon Tubes to Reduce Concentration Polarization in Direct Methanol Fuel Cells [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220420. |
[6] | HOU Congcong, WANG Huiying, LI Tingting, ZHANG Zhiming, CHANG Chunrui, AN Libao. Preparation and Electrochemical Properties of N-CNTs/NiCo-LDH Composite [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220351. |
[7] | SUN Jinshi, CHEN Peng, JING Liping, SUN Fuxing, LIU Jia. Synthesis of Hierarchical Porous Aromatic Frameworks for Immobilization of Thiourea Catalyst [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220171. |
[8] | CHU Mingyue, LI Fengbo, GAO Ning, YANG Xin, YU Tingting, MA Huiyuan, YANG Guixin, PANG Haijun. Construction of a Coronal Polyoxometalate-based Composite Film for Determination of Nitrite [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210579. |
[9] | MA Yukun, JIN Hui, REN Chuanli, LI Zhibo. Ring-opening Polymerization of Cyclic Esters Using Recyclable Polystyrene Supported Urea-Base Binary Catalyst [J]. Chem. J. Chinese Universities, 2021, 42(9): 2968. |
[10] | FAN Ye, HAN Huihui, FANG Yun, FENG Ruiqin, XIA Yongmei. Facile Synthesis of Hollow Nickel Submicrospheres with Hierarchical Nano-structure and Its Catalytic Hydrogenation of Phenol [J]. Chem. J. Chinese Universities, 2021, 42(6): 1801. |
[11] | PU Yangyang, NING Cong, LU Yao, LIU Lili, LI Na, HU Zhaoxia, CHEN Shouwen. Preparation and Characterizations of Cross-linked Sulfonated Poly(ether ether ketone)/Partially Fluorinated Sulfonated Poly(aryl ether sulfone) Blend Membranes [J]. Chem. J. Chinese Universities, 2021, 42(6): 2002. |
[12] | CAO Kaiyue, PENG JinWu, LI Hongbin, SHI Chengying, WANG Peng, LIU Baijun. High-temperature Proton Exchange Membranes Based on Cross-linked Polybenzimidazole/hyperbranched-polymer Blends [J]. Chem. J. Chinese Universities, 2021, 42(6): 2049. |
[13] | WANG Yimeng, LIU Kai, WANG Baoguo. Coating Strategies of Ni-rich Layered Cathode in LIBs [J]. Chem. J. Chinese Universities, 2021, 42(5): 1514. |
[14] | XIAO Zhaozhong, MA Zhi, PIAO Lingyu. Co-catalytic Effect of Ni2P on Photocatalytic Formic Acid Dehydrogenation over Different Semiconductors [J]. Chem. J. Chinese Universities, 2021, 42(12): 3692. |
[15] | WANG Yuemin, MENG Qinglei, WANG Xian, GE Junjie, LIU Changpeng, XING Wei. Enhancement of Performance of Fe-N-C Catalysts by Copper and Sulfur Doping for the Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2020, 41(8): 1843. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||