高等学校化学学报

• 研究论文 • 上一篇    下一篇

高抗冲共聚聚丙烯的结晶动力学及形态

刘秀霞1,2, 陈勇1, 陈晔1, 张万喜2, 陈伟3, 杨德才1   

    1. 中国科学院长春应用化学研究所高分子物理与化学国家重点实验室, 长春 130022;
    2. 吉林大学材料科学与工程学院, 长春 130025;
    3. 北京化工研究院, SINOPEC, 北京 100013
  • 收稿日期:2006-05-17 修回日期:1900-01-01 出版日期:2006-12-10 发布日期:2006-12-10
  • 通讯作者: 杨德才

Crystallization Kinetics and Morphology of High Impact Polypropylene

LIU Xiu-Xia1,2, CHEN Yong1, CHEN Ye1, ZHANG Wan-Xi2, CHEN Wei3, YANG De-Cai1   

    1. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
    2. Material Science and Technology College, Jilin University, Changchun 130025, China;
    3. Beijing Reserch Institute of Chemical Industry, SINOPEC, Beijing 100013, China
  • Received:2006-05-17 Revised:1900-01-01 Online:2006-12-10 Published:2006-12-10
  • Contact: YANG De-Cai

摘要: 用示差扫描量热仪(DSC)、偏光显微镜(PLM)和场发射扫描电镜(FESEM)对高抗冲共聚聚丙烯(HIPP)的非等温结晶行为、等温结晶动力学及结晶形态进行了系统研究, 并与均聚聚丙烯(iPP)进行了对比. 非等温热分析结果表明, HIPP的结晶和熔融温度均低于iPP. 等温结晶动力学分析结果表明, HIPP的半结晶时间、结晶活化能及分子链折叠端表面自由能均高于iPP. 研究结果表明, HIPP中的共聚组分与基体存在部分相容性, 并阻碍其结晶. PLM和FESEM研究结果表明, HIPP中存在大量均匀分散的橡胶粒子, 其直径约1~2 μm, 并具有核-壳结构. 增韧相在基体相中的良好分散与粘结, 以及有效核-壳增韧结构的形成是实现HIPP良好刚-韧平衡性能的关键. 这与HIPP的组成及聚合工艺密切相关.

关键词: 高抗冲共聚聚丙烯, 结晶动力学, 形态

Abstract: Crystallization kinetics and morphology of high impact polypropylene(HIPP) and polypropylene homopolymer(iPP) were studied comparatively by differential scanning calorimetry(DSC), polarized optical microscopy(PLM) and field-emission scanning electron microscopy(FESEM) techniques. The crystallization and melting temperatures of HIPP are lower than those of iPP. The results of isothermal crystallization kinetics study indicates that the crystallization half-time(t1/2) of HIPP is longer, while its activation energy(ΔE) and chain folding surface free energy(σe) are higher, compared with those of iPP. These results show the partial compatibility between the copolymeric components and the matrix of HIPP, which hinders the crystallization of the matrix. The PLM and FESEM images of HIPP reveal that there are uniformly dispersed rubbery particles(ca. 1—2 μm in diameter) with a core-shell structure in the matrix of HIPP. The uniform dispersion, strong interfacial adhesion and core-shell morphology of the rubbery phase in HIPP matrix are the key factors for the superior toughness-rigidity balance of this material.

Key words: High impact polypropylene, Crystallization kinetics, Morphology

中图分类号: 

TrendMD: