高等学校化学学报 ›› 2024, Vol. 45 ›› Issue (12): 20240181.doi: 10.7503/cjcu20240181

• 分析化学 • 上一篇    下一篇

新型稀土近红外荧光探针用于活体多重成像

李红雨, 张洪新()   

  1. 复旦大学先进材料实验室, 上海 200438
  • 收稿日期:2024-04-10 出版日期:2024-12-10 发布日期:2024-08-05
  • 通讯作者: 张洪新 E-mail:zhanghx@fudan.edu.cn
  • 基金资助:
    国家自然科学基金(22104017)

Novel Rare Earth Near-infrared Fluorescent Probes for in vivo Multiplexed Imaging

LI Hongyu, ZHANG Hongxin()   

  1. Laboratory of Advanced Materials,Fudan University,Shanghai 200438,China
  • Received:2024-04-10 Online:2024-12-10 Published:2024-08-05
  • Contact: ZHANG Hongxin E-mail:zhanghx@fudan.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(22104017)

摘要:

提出了激发/发射双维度的荧光编码和活体多通道成像技术, 开发了用于三通道活体成像的稀土 近红外二区(NIR-II, 1000~1700 nm)荧光探针 α-NaYbF4∶8%Tm@NaYbF4@NaYF4(Yb/Tm), α-NaYbF4∶2%Er@ NaYbF4@NaYF4(Yb/Er)和 β-NaErF4@NaYF4(Er@Y). 其中, 纳米颗粒Yb/Tm在915 nm激光激发下, 可发射出1640 nm的长波近红外二区(NIR-II-L, 1500~1900 nm)荧光, 在808 nm激光激发下几乎无荧光输出; Yb/Er在915 nm激光激发下, 可发射出1532 nm的NIR-II-L荧光, 在808 nm激光激发下几乎无荧光输出; Er@Y在808 nm激光激发下, 可发射出1525 nm的NIR-II-L荧光, 在915 nm激光激发下仅有微弱信号输出. 通过稀土核壳纳米结构的设计实现了荧光强度216倍的增强, 在不同功率激发下, 纳米颗粒可保持独立激发和独立发射. 基于上述纳米颗粒的独特光学性质, 实现了三通道信息光学编码和活体高分辨检测, 该方法为光学信息存储和活体多重分析提供了新的工具和思路.

关键词: 稀土荧光探针, 近红外二区, 活体成像, 多重成像

Abstract:

Fluorescence encoding and in vivo multiplexed imaging with dual-dimensions of excitation and emission are proposed. A series of second near-infrared(NIR-II, 1000—1700 nm) fluorescent probes[ α-NaYbF4∶8%Tm@NaYbF4@NaYF4(Yb/Tm), α-NaYbF4∶2%Er@NaYbF4@NaYF4(Yb/Er) and β-NaErF4@NaYF4(Er@Y)] were developed for triple-channel in vivo imaging. Among them, Yb/Tm nanoparticles can emit 1640 nm long-wave second near-infrared fluorescence(NIR-II-L, 1500—1900 nm) under 915 nm laser excitation while no fluorescence signal can be detected under 808 nm excitation. Yb/Er can emit NIR-II-L fluorescence at 1532 nm under excitation of 915 nm laser while no fluorescence signal can be detected under 808 nm excitation. In contrast, Er@Y nanoparticles excited by an 808 nm laser can emit NIR-II-L fluorescence at 1525 nm, while a very weak signal can be detected under the excitation of 915 nm. The design of rare earth core-shell nanostructures successfully enhances the fluorescence intensity by 216 times. Under different power density excitations, the nanoparticles still maintain excellent optical properties of independent excitation/emission. Based on the unique optical properties of these nanoparticles, optical encoding and in vivo high-resolution detection with three channels have been achieved, providing new tools and solutions for optical information storage and in vivo multiplexed analysis.

Key words: Rare earth fluorescent probe, Second near-infrared window, In vivo imaging, Multiplexed imaging

中图分类号: 

TrendMD: