高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (5): 1464.doi: 10.7503/cjcu20200670
王坤华, 姚纪松, 杨俊楠, 宋永慧, 刘雨莹, 姚宏斌()
收稿日期:
2020-09-09
出版日期:
2021-05-10
发布日期:
2021-03-01
通讯作者:
姚宏斌
E-mail:yhb@ustc.edu.cn
基金资助:
WANG Kunhua, YAO Jisong, YANG Junnan, SONG Yonghui, LIU Yuying, YAO Hongbin()
Received:
2020-09-09
Online:
2021-05-10
Published:
2021-03-01
Contact:
YAO Hongbin
E-mail:yhb@ustc.edu.cn
Supported by:
摘要:
金属卤化物钙钛矿作为一类新型的离子型直接带隙半导体材料在电致发光二极管(LED)中有着重要应用前景. 但实现其应用的前提在于金属卤化物钙钛矿材料需要保持高的发光效率和好的稳定性. 为了提高金属卤化物钙钛矿作为LED发光层的激子结合效率, 从而提升其发光效率, 设计和合成金属卤化物钙钛矿纳米晶材料是一个有效途径. 目前, 基于纳米晶材料设计的金属卤化物钙钛矿LED在绿光和红光(包括近红外光)范围已经展现了高的发光亮度和外量子效率(EQE), 其中最高EQE已经超过了20%, 但其稳定性仍无法满足器件应用的要求. 此外, 更值得关注且更重要的是, 蓝光钙钛矿LED的发光亮度和EQE目前仍然不高. 如何制备高效、 稳定的金属卤化物钙钛矿纳米晶LED, 特别是蓝光LED, 是一个具有重大应用前景且具有挑战性的课题. 本文重点介绍了金属卤化物钙钛矿纳米发光层的结构设计和合成方法及金属卤化物钙钛矿LED的研究进展, 分析了金属卤化物钙钛矿LED不稳定的原因, 并对金属卤化物钙钛矿LED研究面临的挑战和未来发展方向进行了总结与展望.
中图分类号:
TrendMD:
王坤华, 姚纪松, 杨俊楠, 宋永慧, 刘雨莹, 姚宏斌. 金属卤化物钙钛矿纳米晶高效发光二极管的制备与器件性能优化. 高等学校化学学报, 2021, 42(5): 1464.
WANG Kunhua, YAO Jisong, YANG Junnan, SONG Yonghui, LIU Yuying, YAO Hongbin. Synthesis and Device Optimization of Highly Efficient Metal Halide Perovskite Light-emitting Diodes. Chem. J. Chinese Universities, 2021, 42(5): 1464.
Fig.2 Schematic representation of the working mechanisms for LED[1](A), schematic diagrams of the LED architectures in the conventional(left) and inverted configuration(right)(B)[16] and energy level alignment of various materials used as perovskites, ETLs and HTLs in the perovskite LEDs(C)[16](A) Copyright 2019, Wiley-VCH; (B, C) Copyright 2017, Elsevier.
Fig.3 Schematic illustration of the LARP technique(A)[18], the crystal structure and morphology of CsPb2Br5 nanoplatelets(top) and photograph of anion exchanged CsPb2Br5 suspension(bottom)(B)[22], schematic illustration of hot injection synthetic system(C)[23], transmission electron microscopy(TEM) image of CsPbBr3 NCs(top) and photograph of colloidal solution of CsPbX3 NCs(bottom)(D)[24](A) Copyright 2015, American Chemical Society; (B) Copyright 2016, Wiley-VCH; (C) Copyright 2019, American Chemical Society; (D) Copyright 2015, American Chemical Society.
Fig.4 Scanning electron microscopy(SEM) images of MAPbBr3 layers with n(MABr):n(PbBr2)=1∶1 without A?NCP(A) and 1.05∶1 with A?NCP(B)[29], optical properties of the CsPbBr3?PEO film(C)[33], evolution of the PLQY with increasing excitation intensity for perovskites with diffe?rent <n> values(D)[13], TEM image of the perovskite nanoplates(scale bar: 20 nm)(E) and high?resolution TEM image of the cross?sectional sample(scale bar: 5 nm)(F)[35](A, B) Copyright 2015, AAAS; (C) Copyright 2016, Wiley-VCH; (D) Copyright 2016, Springer Nature; (E, F) Copyright 2017, American Chemical Society.
Fig.5 Schematic description of radiative and nonradiative recombination of NCs(A), radiative recombination of NCs before and after incorporation of ZnBr2(B), EQE curves of the devices(C)[42], atomic force microscopy(AFM) images of the Br?perovskite films(D) and EQE curves of Br?perovskite LEDs with different molar ratio of BABr:MAPbBr3(E)[31], cross?sectional TEM image of the quasi?core/shell CsPbBr3/MABr structure(top), photographs(left) and EQE curves(right) of perovskite LEDs(F)[10](A―C) Copyright 2018, Wiley-VCH; (D, E) Copyright 2017, Springer Nature; (F) Copyright 2018, Springer Nature.
Fig.6 Photos of unsubstituted and Sr2+?substituted CsPbI3 NCs suspensions under UV?light(365 nm) irra?diation(A)[48], scheme of anion?exchange of synthesized CsPbBr3 NCs using long alkyl ammonium and aryl ammonium(B), EQE curves of perovskite LEDs(C)[51], light propagation path of the top?emitting perovskite LEDs(D)[54], SEM image of the perovskite with submicrometre?scale structures(left), EQE and ECE curves of perovskite LED(right)(E)[9](A) Copyright 2019, American Chemical Society; (B, C) Copyright 2018, Springer Nature; (D) Copyright 2020, American Chemical Society; (E) Copyright 2018, Springer Nature.
Fig.7 PL spectra of TBPO?NCs treated by different amounts of TBPO?CaBr2(A)[60], bipolar resurfaced CsPbBr3 perovskite nanocrystals of various sizes, shapes and compositions suspended in DMF/toluene mixture(B) and EQE versus current density of blue LED devices(C)[43], EL spectra of perovskite LEDs based on PEA2A15Pb2.5Br8.5 film with 40% IPABr(A=MA and Cs) operating under different voltage(D) and various exposure times(E)[67], characterization of EQE versus current density of perovskite LEDs based on PEA2(CsPbBr3)2PbBr4 films with different ratios of EABr(F)[70](A) Copyright 2020, Elsevier B.V. and Science China Press; (B, C) Copyright 2020, Springer Nature; (D, E) Copyright 2018, Springer Nature; (F) Copyright 2020, Springer Nature.
Fig.8 Conductive AFM images of MAPbI3 films aged for 24 h in N2, O2, and ambient atmospheres(percen?tages are the fraction of the area that conducts current)(A)[72], EL spectra of quasi?2D CsPbBrxCl3-x(30% Cl), quasi?2D CsPbBrxCl3-x(40% Cl), and quasi?2D CsPbBrxCl3-x(50% Cl) based perovskite LED operated under varying bias(B)[63](A) Copyright 2015, Wiley-VCH; (B) Copyright 2019, American Chemical Society.
1 | Lu M., Zhang Y., Wang S. X., Guo J., Yu W. W., Rogach A. L., Adv. Funct. Mater.,2019, 29(30), 1902008 |
2 | Mitzi D. B., Prog. Inorg. Chem.,1999, 48, 1—121 |
3 | Saparov B., Mitzi D. B., Chem. Rev.,2016, 116(7), 4558—4596 |
4 | Yin W. J., Shi T. T., Yan Y. F., Adv. Mater.,2014, 26(27), 4653—4658 |
5 | Ema K., Inomata M., Kato Y., Kunugita H., Phys. Rev. Lett.,2008, 100(25), 257401 |
6 | Passarelli J. V., Fairfield D. J., Sather N. A., Hendricks M. P., Sai H., Stern C. L., Stupp S. I., J. Am. Chem. Soc.,2018, 140(23), 7313—7323 |
7 | Mitzi D. B., Chondroudis K., Kagan C. R., Inorg. Chem.,1999, 38(26), 6246-6256 |
8 | Tan Z. K., Moghaddam R. S., Lai M. L., Docampo P., Higler R., Deschler F., Price M., Sadhanala A., Pazos L. M., Credgington D., Hanusch F., Bein T., Snaith H. J., Friend R. H., Nat. Nanotechnol.,2014, 9(9), 687—692 |
9 | Cao Y., Wang N. N., Tian H., Guo J. S., Wei Y. Q., Chen H., Miao Y. F., Zou W., Pan K., He Y. R., Cao H., Ke Y., Xu M. M., Wang Y., Yang M., Du K., Fu Z. W., Kong D. C., Dai D. X., Jin Y. Z., Li G. Q., Li H., Peng Q. M., Wang J. P., Huang W., Nature,2018, 562(7726), 249—253 |
10 | Lin K. B., Xing J., Quan L. N., de Arquer F. P. G., Gong X. W., Lu J. X., Xie L. Q., Zhao W. J., Zhang D., Yan C. Z., Li W. Q., Liu X. Y., Lu Y., Kirman J., Sargent E. H., Xiong Q. H., Wei Z. H., Nature,2018, 562(7726), 245—248 |
11 | Park M. H., Kim J. S., Heo J. M., Ahn S., Jeong S. H., Lee T. W., ACS. Energy Lett.,2019, 4(5), 1134—1149 |
12 | Wang K. H., Zhu B. S., Yao J. S., Yao H. B., Sci. China Chem.,2018, 61(9), 1047—1061 |
13 | Yuan M. J., Quan L. N., Comin R., Walters G., Sabatini R., Voznyy O., Hoogland S., Zhao Y. B., Beauregard E. M., Kanjanaboos P., Lu Z. H., Kim D. H., Sargent E. H., Nat. Nanotechnol.,2016, 11(10), 872—877 |
14 | Kumar S., Jagielski J., Yakunin S., Rice P., Chiu Y. C., Wang M. C., Nedelcu G., Kim Y., Lin S. C., Santos E. J. G., Kovalenko M. V., Shih C. J., ACS Nano,2016, 10(10), 9720—9729 |
15 | Sum T. C., Mathews N., Energ Environ. Sci.,2014, 7(8), 2518—2534 |
16 | Adjokatse S., Fang H. H., Loi M. A., Mater. Today,2017, 20(8), 413—424 |
17 | Schmidt L. C., Pertegas A., Gonzalez⁃Carrero S., Malinkiewicz O., Agouram S., Espallargas G. M., Bolink H. J., Galian R. E., Perez⁃Prieto J., J. Am. Chem. Soc.,2014, 136(3), 850—853 |
18 | Zhang F., Zhong H. Z., Chen C., Wu X. G., Hu X. M., Huang H. L., Han J. B., Zou B. S., Dong Y. P., ACS Nano,2015, 9(4), 4533—4542 |
19 | Xing J., Yan F., Zhao Y. W., Chen S., Yu H. K., Zhang Q., Zeng R. G., Demir H. V., Sun X. W., Huan A., Xiong Q. H., ACS Nano,2016, 10(7), 6623—6630 |
20 | Sun S. B., Yuan D., Xu Y., Wang A. F., Deng Z. T., ACS Nano,2016, 10(3), 3648—3657 |
21 | Li X. M., Wu Y., Zhang S. L., Cai B., Gu Y., Song J. Z.,Zeng H. B., Adv. Funct. Mater.,2016, 26(15), 2435— 2445 |
22 | Wang K. H., Wu L., Li L., Yao H. B., Qian H. S., Yu S. H., Angew. Chem. Int. Ed.,2016, 55(29), 8328—8332 |
23 | Shamsi J., Urban A. S., Imran M., de Trizio L., Manna L., Chem. Rev.,2019, 119(5), 3296—3348 |
24 | Protesescu L., Yakunin S., Bodnarchuk M. I., Krieg F., Caputo R., Hendon C. H., Yang R. X., Walsh A.,Kovalenko M. V., Nano Lett.,2015, 15(6), 3692—3696 |
25 | Vybornyi O., Yakunin S., Kovalenko M. V., Nanoscale,2016, 8(12), 6278—6283 |
26 | Liu P. Z., Chen W., Wang W. G., Xu B., Wu D., Hao J. J., Cao W. Y., Fang F., Li Y., Zeng Y. Y., Pan R. K., Chen S. M., Cao W. Q., Sun X. W., Wang K., Chem. Mater.,2017, 29(12), 5168—5173 |
27 | Woo J. Y., Kim Y., Bae J., Kim T. G., Kim J. W., Lee D. C., Jeong S., Chem. Mater.,2017, 29(17), 7088—7092 |
28 | Imran M., Caligiuri V., Wang M. J., Goldoni L., Prato M., Krahne R., de Trizio L.,Manna L., J. Am. Chem. Soc.,2018, 140(7), 2656—2664 |
29 | Cho H. C., Jeong S. H., Park M. H., Kim Y. H., Wolf C., Lee C. L., Heo J. H., Sadhanala A., Myoung N., Yoo S., Im S. H., Friend R. H., Lee T. W., Science,2015, 350(6265), 1222—1225 |
30 | Kim M. K., Jeon T., Park H. I., Lee J. M., Nam S. A., Kim S. O., Crystengcomm,2016, 18(32), 6090—6095 |
31 | Xiao Z. G., Kerner R. A., Zhao L. F., Tran N. L., Lee K. M., Koh T. W., Scholes G. D., Rand B. P., Nat. Photonics,2017, 11(2), 108—115 |
32 | Jeong B., Han H., Choi Y. J., Cho S. H., Kim E. H., Lee S. W., Kim J. S., Park C., Kim D.,Park C., Adv. Funct. Mater.,2018, 28(16), 1706401 |
33 | Ling Y. C., Tian Y., Wang X., Wang J. C., Knox J. M., Perez⁃Orive F., Du Y. J., Tan L., Hanson K., Ma B. W., Gao H. W., Adv. Mater.,2016, 28(40), 8983—8989 |
34 | Byun J., Cho H., Wolf C., Jang M., Sadhanala A., Friend R. H., Yang H.,Lee T. W., Adv. Mater.,2016, 28(34), 7515— 7520 |
35 | Si J. J., Liu Y., He Z. F., Du H., Du K., Chen D., Li J., Xu M. M., Tian H., He H. P., Di D. W., Ling C. Q., Cheng Y. C., Wang J. P., Jin Y. Z., ACS Nano,2017, 11(11), 11100—11107 |
36 | Song J. Z., Li J. H., Li X. M., Xu L. M., Dong Y. H., Zeng H. B., Adv. Mater.,2015, 27(44), 7162—7167 |
37 | Zhang X. L., Liu H., Wang W. G., Zhang J. B., Xu B., Karen K. L., Zheng Y. J., Liu S., Chen S. M., Wang K., Sun X. W., Adv. Mater.,2017, 29(18), 1606405 |
38 | Zhang X. L., Cao W. Y., Wang W. G., Xu B., Liu S., Dai H. T., Chen S. M., Wang K.,Sun X. W., Nano Energy,2016, 30, 511—516 |
39 | Zou S. H., Liu Y. S., Li J. H., Liu C. P., Feng R., Jiang F. L., Li Y. X., Song J. Z., Zeng H. B., Hong M. C., Chen X. Y., J. Am. Chem. Soc.,2017, 139(33), 11443—11450 |
40 | Yao J. S., Ge J., Han B. N., Wang K. H., Yao H. B., Yu H. L., Li J. H., Zhu B. S., Song J. Z., Chen C., Zhang Q., Zeng H. B., Luo Y., Yu S. H., J. Am. Chem. Soc.,2018, 140(10), 3626—3634 |
41 | Zhong Q. X., Cao M. H., Xu Y. F., Li P. L., Zhang Y., Hu H. C., Yang D., Xu Y., Wang L., Li Y. Y., Zhang X. H., Zhang Q., Nano Lett.,2019, 19(6), 4151—4157 |
42 | Song J. Z., Fang T., Li J. H., Xu L. M., Zhang F. J., Han B. N., Shan Q. S.,Zeng H. B., Adv. Mater.,2018, 30(50), 1805409 |
43 | Dong Y. T., Wang Y. K., Yuan F. L., Johnston A., Liu Y., Ma D. X., Choi M. J., Chen B., Chekini M., Baek S. W., Sagar L. K., Fan J., Hou Y., Wu M. J., Lee S., Sun B., Hoogland S., Quintero⁃Bermudez R., Ebe H., Todorovic P., Dinic F., Li P. C., Kung H. T., Saidaminov M. I., Kumacheva E., Spiecker E., Liao L. S., Voznyy O., Lu Z. H., Sargent E. H., Nat. Nanotechnol.,2020, 15(8), 668—674 |
44 | Fang T., Wang T., Li X., Dong Y., Bai S., Song J., Sci. Bull.,2021, 66(1), 36—43 |
45 | Zhang L. Q., Yang X. L., Jiang Q., Wang P. Y., Yin Z. G., Zhang X. W., Tan H. R., Yang Y., Wei M. Y., Sutherland B. R., Sargent E. H., You J. B., Nat. Commun.,2017, 8, 15640 |
46 | de Quilettes D. W., Koch S., Burke S., Paranji R. K., Shropshire A. J., Ziffer M. E., Ginger D. S., ACS Energy Lett.,2016, 1(2), 438—444 |
47 | Yang X. L., Zhang X. W., Deng J. X., Chu Z. M., Jiang Q., Meng J. H., Wang P. Y., Zhang L. Q., Yin Z. G., You J. B., Nat. Commun.,2018, 9, 570 |
48 | Yao J. S., Ge J., Wang K. H., Zhang G. Z., Zhu B. S., Chen C., Zhang Q., Luo Y., Yu S. H., Yao H. B., J. Am. Chem. Soc.,2019, 141(5), 2069—2079 |
49 | Lu M., Zhang X. Y., Zhang Y., Guo J., Shen X. Y., Yu W. W., Rogach A. L., Adv. Mater.,2018, 30(50), 1804691 |
50 | Shen X. Y., Zhang Y., Kershaw S. V., Li T. S., Wang C. C., Zhang X. Y., Wang W. Y., Li D. G., Wang Y. H., Lu M., Zhang L. J., Sun C., Zhao D., Qin G. S., Bai X., Yu W. W., Rogach A. L., Nano Lett.,2019, 19(3), 1552—1559 |
51 | Chiba T., Hayashi Y., Ebe H., Hoshi K., Sato J., Sato S., Pu Y. J., Ohisa S.,Kido J., Nat. Photonics,2018, 12(11), 681— 687 |
52 | Pan J., Shang Y. Q., Yin J., De Bastiani M., Peng W., Dursun I., Sinatra L., El⁃Zohry A. M., Hedhili M. N., Emwas A. H., Mohammed O. F., Ning Z. J., Bakr O. M., J. Am. Chem. Soc.,2018, 140(2), 562—565 |
53 | Zhang X. Y., Sun C., Zhang Y., Wu H., Ji C. Y., Chuai Y. H., Wang P., Wen S. P., Zhang C. F., Yu W. W., J. Phys. Chem. Lett.,2016, 7(22), 4602—4610 |
54 | Lu M., Guo J., Sun S. Q., Lu P., Wu J. L., Wang Y., Kershaw S. V., Yu W. W., Rogach A. L., Zhang Y., Nano Lett.,2020, 20(4), 2829—2836 |
55 | Wang N. N., Cheng L., Ge R., Zhang S. T., Miao Y. F., Zou W., Yi C., Sun Y., Cao Y., Yang R., Wei Y. Q., Guo Q., Ke Y., Yu M. T., Jin Y. Z., Liu Y., Ding Q. Q., Di D. W., Yang L., Xing G. C., Tian H., Jin C. H., Gao F., Friend R. H., Wang J. P., Huang W., Nat. Photonics,2016, 10(11), 699—704 |
56 | Tian Y., Zhou C. K., Worku M., Wang X., Ling Y. C., Gao H. W., Zhou Y., Miao Y., Guan J. J., Ma B. W., Adv. Mater.,2018, 30(20), 1707093 |
57 | Cai W. Q., Chen Z. M., Li Z. C., Yan L., Zhang D. L., Liu L. L., Xu Q. H., Ma Y. G., Huang F., Yip H. L., Cao Y., ACS Appl. Mater. Interfaces,2018, 10(49), 42564—42572 |
58 | Pan J., Quan L. N., Zhao Y. B., Peng W., Murali B., Sarmah S. P., Yuan M. J., Sinatra L., Alyami N. M., Liu J. K., Yassitepe E., Yang Z. Y., Voznyy O., Comin R., Hedhili M. N., Mohammed O. F., Lu Z. H., Kim D. H., Sargent E. H., Bakr O. M., Adv. Mater.,2016, 28(39), 8718—8725 |
59 | Hou S. C., Gangishetty M. K., Quan Q. M., Congreve D. N., Joule,2018, 2(11), 2421—2433 |
60 | Yao J. S., Wang L., Wang K. H., Yin Y. C., Yang J. N., Zhang Q., Yao H. B., Sci. Bull.,2020, 65(14), 1150—1153 |
61 | Kumawat N. K., Dey A., Kumar A., Gopinathan S. P., Narasimhan K. L., Kabra D., ACS Appl. Mater. Interfaces,2015, 7(24), 13119—13124 |
62 | Kim H. P., Kim J., Kim B. S., Kim H. M., Kim J., Yusoff A. B., Jang J., Nazeeruddin M. K., Adv. Opt. Mater.,2017, 5(7), 1600920 |
63 | Wang K. H., Peng Y. D., Ge J., Jiang S. L., Zhu B. S., Yao J. S., Yin Y. C., Yang J. N., Zhang Q., Yao H. B., ACS Photonics,2019, 6(3), 667—676 |
64 | Yuan Z., Shu Y., Xin Y., Ma B. W., Chem. Commun.,2016, 52(20), 3887—3890 |
65 | Wang Q., Ren J., Peng X. F., Ji X. X., Yang X. H., ACS Appl. Mater. Interfaces,2017, 9(35), 29901—29906 |
66 | Vashishtha P., Ng M., Shivarudraiah S. B., Halpert J. E., Chem. Mater.,2019, 31(1), 83—89 |
67 | Xing J., Zhao Y. B., Askerka M., Quan L. N., Gong X. W., Zhao W. J., Zhao J. X., Tan H. R., Long G. K., Gao L., Yang Z. Y., Voznyy O., Tang J., Lu Z. H., Xiong Q. H., Sargent E. H., Nat. Commun.,2018, 9, 3541 |
68 | Liu Y., Cui J. Y., Du K., Tian H., He Z. F., Zhou Q. H., Yang Z. L., Deng Y. Z., Chen D., Zuo X. B., Ren Y., Wang L., Zhu H. M., Zhao B. D., Di D. W., Wang J. P., Friend R. H., Jin Y. Z., Nat. Photonics,2019, 13(11), 760—764 |
69 | Pang P., Jin G., Liang C., Wang B., Xiang W., Zhang D., Xu J., Hong W., Xiao Z., Wang L., Xing G., Chen J., Ma D., ACS Nano,2020, 14(9), 11420—11430 |
70 | Chu Z., Zhao Y., Ma F., Zhang C. X., Deng H., Gao F., Ye Q., Meng J., Yin Z., Zhang X.,You J., Nat. Commun.,2020, 11, 4165 |
71 | Cho H., Kim Y. H., Wolf C., Lee H. D., Lee T. W., Adv. Mater.,2018, 30(42), 1704587 |
72 | Conings B., Drijkoningen J., Gauquelin N., Babayigit A., D'Haen J., D'Olieslaeger L., Ethirajan A., Verbeeck J., Manca J., Mosconi E., de Angelis F., Boyen H. G., Adv. Energy. Mater.,2015, 5(15), 1500477 |
73 | Huang H., Bodnarchuk M. I., Kershaw S. V., Kovalenko M. V., Rogach A. L., ACS Energy Lett.,2017, 2(9), 2071—2083 |
74 | Swarnkar A., Mir W. J., Nag A., ACS Energy Lett.,2018, 3(2), 286—289 |
75 | Syzgantseva O. A., Saliba M., Gratzel M., Rothlisberger U., J. Phys. Chem. Lett.,2017, 8(6), 1191—1196 |
76 | Quan L. N., Yuan M. J., Comin R., Voznyy O., Beauregard E. M., Hoogland S., Buin A., Kirmani A. R., Zhao K., Amassian A., Kim D. H., Sargent E. H., J. Am. Chem. Soc.,2016, 138(8), 2649—2655 |
77 | Yang D. D., Li X. M., Zeng H. B., Adv. Mater. Interfaces,2018, 5(8), 1701662 |
78 | Zhao L., Gao J., Lin Y. L., Yeh Y. W., Lee K. M., Yao N., Loo Y. L., Rand B. P., Adv. Mater.,2017, 29(24), 1605317 |
79 | Bi E. B., Chen H., Xie F. X., Wu Y. Z., Chen W., Su Y. J., Islam A., Gratzel M., Yang X. D., Han L. Y., Nat. Commun.,2017, 8, 15330 |
80 | Back H., Kim G., Kim J., Kong J., Kim T. K., Kang H., Kim H., Lee J., Lee S., Lee K., Energ. Environ. Sci.,2016, 9(4), 1258—1263 |
81 | Vashishtha P., Halpert J. E., Chem. Mater.,2017, 29(14), 5965—5973 |
82 | Yang J. N., Song Y., Yao J. S., Wang K. H., Wang J. J., Zhu B. S., Yao M. M., Rahman S. U., Lan Y. F., Fan F. J., Yao H. B., J. Am. Chem. Soc.,2020, 142(6), 2956—2967 |
83 | Wang H. R., Zhang X. Y., Wu Q. Q., Cao F., Yang D. W., Shang Y. Q., Ning Z. J., Zhang W., Zheng W. T., Yan Y. F., Kershaw S. V., Zhang L. J., Rogach A. L., Yang X. Y., Nat. Commun.,2019, 10, 665 |
84 | Zhu Z. Q., Klimes K., Holloway S., Li J., Adv. Mater.,2017, 29(6), 1605002 |
85 | Dai X. L., Deng Y. Z., Peng X. G., Jin Y. Z., Adv. Mater.,2017, 29(14), 1607022 |
[1] | 楚宇逸, 兰畅, 罗二桂, 刘长鹏, 葛君杰, 邢巍. 单原子铈对弱芬顿效应活性位点氧还原稳定性的提升[J]. 高等学校化学学报, 2022, 43(9): 20220294. |
[2] | 郑安妮, 金磊, 杨家强, 王赵云, 李威青, 杨防祖, 詹东平, 田中群. 5,5-二甲基乙内酰脲在化学镀铜中的作用[J]. 高等学校化学学报, 2022, 43(8): 20220191. |
[3] | 王红宁, 黄丽, 清江, 马腾洲, 蒋伟, 黄维秋, 陈若愚. 香蒲基生物炭的活化及对VOCs吸附的应用[J]. 高等学校化学学报, 2022, 43(4): 20210824. |
[4] | 李伟辉, 李浩博, 曾诚, 梁昊樾, 陈佳俊, 李俊勇, 李会巧. 热压法构筑锂负极聚偏氟乙烯基双功能保护层的研究[J]. 高等学校化学学报, 2022, 43(2): 20210629. |
[5] | 伍泽鑫, 朱渊杰, 王泓中, 王均安, 贺英. 甲基修饰的咔唑/二苯砜基AIE-TADF蓝光材料及其OLED器件[J]. 高等学校化学学报, 2022, 43(11): 20220371. |
[6] | 常斯惠, 陈涛, 赵黎明, 邱勇隽. 离子液体增塑生物基聚丁内酰胺的热分解机理[J]. 高等学校化学学报, 2022, 43(11): 20220353. |
[7] | 孙金时, 陈鹏, 景丽萍, 孙福兴, 刘佳. 多级孔芳香骨架材料的合成及固载硫脲催化剂的研究[J]. 高等学校化学学报, 2022, 43(10): 20220171. |
[8] | 李伦, 张静妍, 罗静, 刘仁, 朱乙. UV/Vis-LED激发的香豆素吡啶鎓盐光引发剂的合成及性能[J]. 高等学校化学学报, 2022, 43(10): 20220178. |
[9] | 袁博, 祁超超, 张相挺, 栾国颜, 邹海峰. 基于能量传递可调光色荧光粉Ca2LaTaO6∶ Dy3+, Sm3+的发光性质及其发光二极管器件应用[J]. 高等学校化学学报, 2021, 42(9): 2717. |
[10] | 岳胜利, 武光宝, 李星, 李康, 黄高胜, 唐翌, 周惠琼. 准二维钙钛矿太阳能电池的研究进展[J]. 高等学校化学学报, 2021, 42(6): 1648. |
[11] | 王红宁, 黄丽, 宋夫交, 朱婷, 黄维秋, 钟璟, 陈若愚. 中空碳纳米球的制备及VOCs吸附性能[J]. 高等学校化学学报, 2021, 42(6): 1704. |
[12] | 孟利利, 陈琳琳, 张小亮, 解令海, 刘欢. 可控液体输运制备取向聚合物薄膜:面向性能增强的发光二极管[J]. 高等学校化学学报, 2021, 42(4): 1260. |
[13] | 刘瑶, 邓正涛. 反溶剂法快速合成高效发光二维锡卤钙钛矿材料[J]. 高等学校化学学报, 2021, 42(12): 3774. |
[14] | 张俊, 王彬, 潘莉, 马哲, 李悦生. 含咪唑离子聚乙烯离聚体的合成与性能[J]. 高等学校化学学报, 2020, 41(9): 2070. |
[15] | 王婷婷, 雷宇涵, 林宇娟, 黄加玲, 刘翠娥, 郑凤英, 李顺兴. 脂质体封端CsPbX3(X=Cl,Br,I)纳米晶体的制备及在发光二极管中的应用[J]. 高等学校化学学报, 2020, 41(8): 1896. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||