高等学校化学学报 ›› 2012, Vol. 33 ›› Issue (02): 341.doi: 10.3969/j.issn.0251-0790.2012.02.023

• 物理化学 • 上一篇    下一篇

正癸烷燃烧机理及航空煤油点火延时动力学模拟

王慧汝1, 金捷1, 王静波2, 谈宁馨2, 李象远2   

  1. 1. 北京航空航天大学能源与动力工程学院, 北京 100191;
    2. 四川大学化学工程学院, 成都 610065
  • 收稿日期:2011-05-13 出版日期:2012-02-10 发布日期:2012-01-13
  • 通讯作者: 李象远, 男, 博士, 教授, 博士生导师, 主要从事理论化学和燃烧反应动力学研究. E-mail: xyli@scu.edu.cn E-mail:xyli@scu.edu.cn
  • 基金资助:

    国家自然科学基金(批准号: 91016002, 91116001)资助.

Combustion Mechanism of n-Decane at High Temperatures and Kinetic Modeling of Ignition Delay for Aviation Kerosene

WANG Hui-Ru1, JIN Jie1, WANG Jing-Bo2, TAN Ning-Xin2, LI Xiang-Yuan2   

  1. 1. School of Jet Propulsion, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
    2. College of Chemical Engineering, Sichuan University, Chengdu 610065, China
  • Received:2011-05-13 Online:2012-02-10 Published:2012-01-13

摘要: 以单一正癸烷作为国产航空煤油的单组分替代模型, 应用自有的碳氢燃料反应机理生成程序ReaxGen-Combustion构建了燃烧反应的详细机理. 以国产煤油在加热型激波管上的燃烧实验为参考, 对比研究了文献报道的3组分替代模型(模型Ⅰ)、2组分替代模型(模型Ⅱ)以及本文的单组分替代燃烧反应机理(模型Ⅲ)在预测我国航空煤油点火延时特性方面的实用性. 结果表明, 温度在1052~1538 K时, 模型Ⅰ预测的点火延时与实验值相差较大; 模型Ⅲ在温度高于1176 K时的预测值与实验值符合较好, 在1052~1176 K之间时则相差较大; 模型Ⅱ与模型Ⅲ预测值符合很好, 由于前者考虑了低温反应机理, 因而对1052~1176 K区间的预测精度与模型Ⅲ相比有所改善. 计算还发现, 模型Ⅱ中添加的20%(质量分数)1,2,4-三甲基苯对高温段点火延时未产生明显影响.

关键词: 正癸烷, 航空煤油, 燃烧反应动力学机理, 点火延时, 加热型激波管

Abstract: A detailed mechanism for the combustion of n-decane, which is the single surrogate component of the Chinese aviation kerosene, was constructed by our program ReaxGen-Combustion for automatically generating reaction mechanisms of hydrocarbon fuels. Then referencing the observations of the Chinese aviation kerosene in the heating-up shock wave tube reactor, contrast studies were done on the reliability of the follo-wing models predicting the ignition delay behavior of gas-phase Chinese aviation kerosene: the three-component surrogate model(model Ⅰ), the two-component surrogate model(model Ⅱ), and the present single surrogate model(model Ⅲ). The results show that the ignition delay time predicted by model Ⅰ is in bad agreement with the observations during the temperature range of 1052-1538 K; model Ⅲ can give reasonable ignition delay time when the temperature is higher than 1176 K, but give results different from the observations in the range of 1052-1176 K; the ignition delay time predicted by model Ⅱ is close to those by model Ⅲ, however, the former takes the low-temperature mechanisms into account, so can give better results than model Ⅲ in the range of 1052-1176 K, though still different from the observations. In addition, the additive 20%(mass fraction) of 1,2,4-trimethylbenzene in model Ⅱ has little effect on the ignition delay time at high temperature.

Key words: n-Decane, Aviation kerosene, Chemical reaction kinetic mechanism, Ignition delay, Heated shock tube

中图分类号: 

TrendMD: