高等学校化学学报

• 研究论文 • 上一篇    下一篇

基于插层化学的单晶氧化钨纳米片的制备、表征与形成机制

陈德良1, 王海龙1, 张锐1, 关绍康1, 卢红霞1, 许红亮1, 杨道媛1, 菅原义之2, 高濂3   

    1. 郑州大学材料科学与工程学院, 郑州450001;
    2. 日本早稻田大学理工学院应用化学系, 东京169-8555;
    3. 中国科学院上海硅酸盐研究所高性能陶瓷与超微结构国家重点实验室, 上海 200050
  • 收稿日期:2007-10-10 修回日期:1900-01-01 出版日期:2008-07-10 发布日期:2008-07-10
  • 通讯作者: 陈德良

Synthesis, Characterization and Formation Mechanism of Single-Crystal WO3 Nanosheets via an Intercalation-chemistry-based Route

CHEN De-Liang1*, WANG Hai-Long1, ZHANG Rui1, GUAN Shao-Kang1, LU Hong-Xia1, XU Hong-Liang1, YANG Dao-Yuan1, SUGAHARA Yoshiyuki2, GAO Lian3   

    1. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
    2. Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan;
    3. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2007-10-10 Revised:1900-01-01 Online:2008-07-10 Published:2008-07-10
  • Contact: CHEN De-Liang

摘要: 结合插层化学与湿化学方法的优点, 建立了一种高比表面积、大径厚比、易分散的二维氧化钨(WO3)纳米片单晶的制备新方法. 微米级WO3与Bi2O3在800 ℃通过固相反应生成层状化合物Bi2W2O9; 所得到的Bi2W2O9经盐酸选择性溶出[Bi2O2]层后得到质子化形式的H2W2O7·xH2O相. 以H2W2O7·xH2O为钨源, 以辛胺插层所得无机-有机混杂纳米带为前驱物, 经硝酸氧化除去前驱物中的有机组分后得到正交相WO3·H2O纳米片; 将所得到的WO3·H2O纳米片在250~ 450 ℃和空气气氛中热处理2~5 h(升温速率为2 ℃/min), 得到单斜相WO3单晶纳米片. TEM与SEM分析结果表明, 单晶WO3·H2O与WO3纳米片的形貌相似, 其大小为(200~500) nm×(200~500) nm, 厚度为10~30 nm; 所得WO3·H2O与WO3纳米片单晶的厚度方向分别为[010]和[001]. N2吸附结果表明, WO3·H2O与WO3纳米片的比表面积分别可达到250与180 m2/g.

关键词: 氧化钨, 纳米片, 无机-有机混杂纳米带, 层状化合物, 插层化学

Abstract: In this work an intercalation-chemistry-based method to synthesize tungstate and tungsten oxide nanosheets was described. A layered bismuth tungstate(Bi2W2O9) was used as the W-containing starting material. After the bismuth oxide layers were leached by a chloride acid, a protonated form, H2W2O7·xH2O with sizes of 5—15 μm, was achieved. The intercalation reaction of n-octylamine with H2W2O7·xH2O in heptane and the subsequent dissolution-recrystallization process led to the formation of tungstate-based inorganic organic hybrid nanobelts. Orthorhombic WO3·H2O nanosheets were obtained by removing the organic species of the as-obtained hybrid nanobelts. After the dehydration of the as-obtained WO3·H2O nanosheets at 250—450 ℃, monoclinic WO3 nanosheets were achieved. The results of XRD, TEM and SEM indicate that the obtained WO3·H2O and WO3 were single-crystalline nanosheets with areas of (200—500) nm×(200—500) nm and thicknesses of 10—30 nm. The SAED patterns suggest that the WO3·H2O and WO3 nanosheets possessed a reduced directions of [010] and [001], respectively. N2 adsorption measurement results indicate that the specific surface areas of the as-obtained WO3·H2O and WO3 nanosheets were up to 250 and 180 m2/g, respectively. The formation mechanisms for hybrid nanobelts, WO3·H2O and WO3 nanosheets were discussed. The proposed novel route was efficient in producing two-dimensional WO3 nanosheets on a large scale.

Key words: Tungsten oxide, Nanosheet, Inorganic-organic hybrid nanobelt, Layered compound, Intercalation chemistry

中图分类号: 

TrendMD: