高等学校化学学报 ›› 2010, Vol. 31 ›› Issue (1): 20.

• 研究论文 • 上一篇    下一篇

静电纺丝技术制备Y2O3∶Yb3+,Er3+上转换纳米纤维及其表征

董相廷, 刘莉, 王进贤, 刘桂霞   

  1. 长春理工大学化学与环境工程学院, 长春 130022
  • 收稿日期:2009-02-23 出版日期:2010-01-10 发布日期:2010-01-10
  • 通讯作者: 董相廷, 男, 博士, 教授, 博士生导师, 主要从事纳米材料研究董相廷, 男, 博士, 教授, 博士生导师, 主要从事纳米材料研究. E-mail: dongxiangting888@yahoo.com.cn
  • 基金资助:

    吉林省科技发展计划重大项目(批准号: 20070402, 20060504)、教育部科学技术研究重点项目(批准号: 207026)、长春市科技计划项目(批准号: 2007045)、吉林省教育厅“十一五”科学技术研究项目(批准号: 2007-45, 2006JYT05)和吉林省环保局科技项目(批准号: 2006-24)资助.

Fabrication and Characterization of Y2O3∶Yb3+,Er3+ Upconversion Nanofibers by Electrospinning

DONG Xiang-Ting*, LIU Li, WANG Jin-Xian, LIU Gui-Xia   

  1. School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2009-02-23 Online:2010-01-10 Published:2010-01-10
  • Contact: DONG Xiang-Ting董相廷, 男, 博士, 教授, 博士生导师, 主要从事纳米材料研究. E-mail: dongxiangting888@yahoo.com.cn
  • Supported by:

    吉林省科技发展计划重大项目(批准号: 20070402, 20060504)、教育部科学技术研究重点项目(批准号: 207026)、长春市科技计划项目(批准号: 2007045)、吉林省教育厅“十一五”科学技术研究项目(批准号: 2007-45, 2006JYT05)和吉林省环保局科技项目(批准号: 2006-24)资助.

摘要:

采用静电纺丝技术制备了PVA/[Y(NO3)3+Yb(NO3)3+Er(NO3)3]复合纳米纤维, 将其在适当的温度下进行热处理, 得到Y2O3∶Yb3+,Er3+上转换纳米纤维. XRD分析表明, 复合纳米纤维为无定形, Y2O3∶Yb3+,Er3+上转换纳米纤维属于体心立方晶系, 空间群为Ia3. SEM分析表明, 复合纳米纤维的平均直径约为150 nm; 随着焙烧温度的升高, 纤维直径逐渐减小. 经过600 ℃焙烧后, 获得了直径约60 nm的Y2O3∶Yb3+,Er3+上转换纳米纤维. TG-DTA分析表明, 当焙烧温度高于600 ℃时, 复合纳米纤维中水分、有机物和硝酸盐分解挥发完毕, 样品不再失重, 总失重率为83%. FTIR分析表明, 复合纳米纤维与纯PVA的红外光谱一致, 当焙烧温度高于600 ℃时, 生成了Y2O3∶Yb3+,Er3+上转换纳米纤维. 该纤维在980 nm的半导体激光器激发下发射出中心波长为521, 562 nm的绿色和656 nm的红色上转换荧光, 分别对应于 Er3+离子的2H11/2/4S3/24Il5/2跃迁和4F9/24Il5/2跃迁. 对Y2O3∶Yb3+,Er3+上转换纳米纤维的形成机理进行了讨论.

关键词: Y2O3; Y2O3∶Yb3+,Er3+; 静电纺丝; 上转换纳米纤维

Abstract:

PVA/[Y(NO3)3+Yb(NO3)3+Er(NO3)3] composite nanofibers were fabricated by electrospinning. Y2O3∶Yb3+,Er3+ upconversion nanofibers were obtained by calcination of the relevant composite nanofibers. XRD analysis reveals that composite nanofibers are amorphous in structure, and Y2O3∶Yb3+,Er3+ upconversion nanofibers are cubic in structure with space group Ia3. SEM images indicate that the mean diameter of the composite nanofibers is ca. 150 nm, and the diameter of the fibers gradually decrease with the increase of calcinations temperature. Y2O3∶Yb3+,Er3+ upconversion nanofibers of 60 nm in average diameter were acquired at 600 ℃. TG-DTA analysis reveals that the water, organic compounds, nitrates in the composite nanofibers are decomposed and volatilized totally, and the mass of the sample kept constant when sintering temperature is above 600 ℃, and the total mass loss percentage is 83%. FTIR analysis manifest that the spectrum of the composite nanofibers is basically the same as that of the pure PVA, and Y2O3∶Yb3+,Er3+ upconversion nanofibers are formed above 600 ℃. The upconversion spectroscopic properties of the Y2O3∶Yb3+,Er3+ nanofibres were investigated under the excitation of a 980 nm continuous wave diode laser. Y2O3∶Yb3+, Er3+ nanofibres emitted strong green and red upconversion emissions centering at 521, 562 and 656 nm, respectively. The green emissions were attributed to the transitions of 2H11/2/4S3/24Il5/2 energy levels of Er3+ ions, and the red emission was assigned to the transition of 4F9/24Il5/2 energy levels of Er3+ ions. The formation mechanism of Y2O3∶Yb3+,Er3+ upconversion nanofibers was advanced. The technique can be applied to fabrication of other rare earths composite oxides upconversion nanofibers.

Key words: Y2O3; Y2O3∶Yb3+,Er3+; Electrospinning; Upconversion nanofiber

TrendMD: