高等学校化学学报

• 研究论文 • 上一篇    下一篇

废糖蜜改性赤泥零价铁基催化剂增强非均相电芬顿系统降解环丙沙星:资源利用和活性氧物种的研究

刘春祥1,李晨光2,杨文静3,李佳潞3,李轶3   

  1. 1. 中国资源循环集团塑料再生有限公司 2. 中石化(天津)石油化工有限公司 3. 天津大学理学院化学系
  • 收稿日期:2025-06-27 修回日期:2025-09-17 出版日期:2025-09-24 发布日期:2025-09-24
  • 通讯作者: 李轶 E-mail:liyi@tju.edu.cn
  • 基金资助:
    天津市重点研发计划科技支撑重点项目(批准号:23YFZCSN00130)资助

Enhancing Ciprofloxacin Degradation via Waste Molasses-Modified Red Mud Zero-Valent Iron Catalysts in Heterogeneous Electro-Fenton Systems: Mechanistic Insights into Resource Recycling and ROS Synergy

LIU Chunxiang1,LI Chenguang2,YANG Wenjing3,LI Jialu3,LI Yi3   

  1. 1. China Resource Recycling Group Plastic Regeneration Co.,Ltd 2. Sinopec Tianjin Petrochemical Corporation 3. Department of Chemistry,School of Science,Tianjin University
  • Received:2025-06-27 Revised:2025-09-17 Online:2025-09-24 Published:2025-09-24
  • Contact: LI Yi E-mail:liyi@tju.edu.cn
  • Supported by:
    Supported by the Tianjin Key Research and Development Plan Science and Technology Support Program, China(No. 23YFZCSN00130)

摘要: 抗生素的广泛使用导致其在水环境中持续累积,引发抗性基因传播等生态风险。非均相电芬顿(HEF)技术因可规避铁泥生成与操作简单而成为极具发展潜力用于处理水污染的高级氧化技术,但其实际应用仍受限于Fe2+/Fe3+循环动力学迟缓及高成本等问题。本研究以工业废料赤泥(RM)为原料,通过与另一工业废料废糖蜜共热解制备了零价铁(Fe0)基催化剂(RMM-1:1)。表征证实,废糖蜜热解产生的还原性气体将RM中的铁氧化物高效还原为Fe0,赋予RMM-1:1高比表面积与快速电子转移能力,通过强化Fe2+再生与多路径活性氧(·OH、1O2、·O2-)协同作用实现抗生素高效降解:RMM-1:1在优化条件下对30 mg·L-1环丙沙星的60 min去除率达93.6%(表观速率常数0.1081 min-1),其Fe0介导的电子转移与非自由基路径(1O2主导)协同驱动污染物的去除。机理研究表明,Fe0的持续电子供给是突破Fe2+/Fe3+循环瓶颈的核心机制,而多活性氧的时空协同效应则保障了污染物降解效能。本研究耦合污染物降解与固废资源化双重目标构建了低成本、高效率的HEF催化体系,为抗生素污染控制的实际应用提供了创新的解决方案。

关键词: 赤泥, 非均相电芬顿技术, 零价铁, 资源利用, 废水净化

Abstract: The extensive use of antibiotics has led to their persistent accumulation in aquatic environments, triggering ecological risks such as antibiotic resistance gene dissemination. Heterogeneous electro-Fenton (HEF) technology shows great potential for water pollution treatment as it circumvents iron sludge generation and features simple operation. However, its practical application remains limited by sluggish Fe2+/Fe3+ cycling kinetics and high costs. This study developed a zero-valent iron-based catalyst (RMM-1:1) through co-pyrolysis of red mud (RM, an industrial waste) with waste molasses (another industrial byproduct). Characterization revealed that reductive gases from molasses pyrolysis effectively converted iron oxides in RM to Fe0, endowing RMM-1:1 with high specific surface area and rapid electron transfer capability. The optimized system achieved 93.6% removal of 30 mg·L-1 ciprofloxacin within 60 min (apparent rate constant: 0.1081 min-1) through enhanced Fe2+ regeneration and multi-path reactive oxygen species (·OH, 1O2, ·O2-) synergy. Mechanistic studies demonstrated that Fe0-mediated electron transfer coupled with non-radical pathways (1O2-dominated) synergistically drove pollutant removal. The sustained electron supply from Fe0 was identified as the core mechanism overcoming Fe2+/Fe3+ cycling bottlenecks, while spatiotemporal ROS synergy ensured degradation efficiency. This work establishes a cost-effective HEF catalytic system that integrates pollutant degradation with solid waste valorization, providing an innovative solution for practical antibiotic pollution control.

Key words: Red mud, Heterogeneous electro-Fenton technology, Zero-valent iron, Resource utilization, Wastewater purification

中图分类号: 

TrendMD: