高等学校化学学报

• 研究论文 • 上一篇    下一篇

BCC结构下二元合金Fe-X (X= Cr, Co, Mo, W)低温低浓度下固溶软化行为的机制研究

王娜,李翔飞   

  1. 北京科技大学冶金与生态工程学院物理化学系, 北京100083
  • 收稿日期:2024-03-12 修回日期:2024-04-23 网络首发:2024-04-24 发布日期:2024-04-24
  • 通讯作者: 王娜 E-mail:nawang@ustb.edu.cn
  • 基金资助:
    国家自然科学基金(批准号: 11804021)和中央高校基本科研业务费(批准号: RF-TP-16-080A1)资助.

The Mechanism of Solid Solution Softening Behavior in Four Binary Alloys Fe-X(X= Cr, Co, Mo, W) at Low Temperatures and Low Concentrations

WANG Na, LI Xiangfei   

  1. Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2024-03-12 Revised:2024-04-23 Online First:2024-04-24 Published:2024-04-24
  • Contact: Na Wang E-mail:nawang@ustb.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(No.11804021) and the Fundamental Research Funds for the Central Universities, China (No.FRF-TP-16-080A1).

摘要: 本工作采用第一性原理计算对bcc Fe的4种二元合金Fe-X (X= Cr, Co, Mo, W)低温低浓度下固溶软化行为的机制进行了研究. 低温低浓度下的固溶软化行为由双扭结(double kink)形核控制, 由溶质原子直接引起双扭结形核势垒降低为固溶软化的本征机制, 而由溶质原子对间隙原子清除减少双扭结形核为固溶软化的外部机制. 本工作分别计算了bcc Fe的4种二元合金Fe-X (X= Cr, Co, Mo, W)中反映双扭结形核势垒的原子行位移能(ARD)和堆垛层错能(GSF). 计算表明, 仅Cr可微弱降低ARD和GSF能, 而Co, Mo, W均引起ARD和GSF能升高, 因此, 依据固溶软化的本征机制, 仅Cr引起固溶软化, 而Co, Mo, W均引起固溶强化. Cr, Mo, W与周围Fe原子均为反铁磁相互作用, Co与Fe为铁磁相互作用. 可见, 尽管铁磁/反铁磁相互作用与价电子数(电子构型)具有一定相关性, 双扭结形核势垒并不与价电子数(电子构型)明显相关. 进一步计算表明, 双扭结形核势垒与其结合能呈现正相关关系, Cr与Fe结合能减弱因此双扭结形核势垒降低, 而Co, Mo, W与Fe结合能增强因此双扭结形核势垒升高. 而结合能并没表现出与原子半径, 电子数(电子构型)的明显相关性, 因此, 双扭结形核势垒并不与原子半径?电子数(电子构型)明显相关. 考虑到依据本征机制, Co, Mo, W与Fe的结合能增强引起双扭结形核势垒升高因此为固溶强化, 其二元合金低温低浓度下的固溶软化行为无法用本征机制解释, 需要考虑外部机制(如间隙C原子的作用), 而Cr二元合金的固溶软化行为可能为本征机制.

关键词: bcc Fe, 二元合金, 原子行位移能(ARD), 堆垛层错能(GSF), 固溶软化

Abstract: In this study, the mechanism of the solid solution softening (SSS) behavior in four binary alloys of bcc iron Fe-X (X= Cr, Co, Mo, W) at low temperatures and low concentrations was investigated using first-principles calculations. The SSS behavior of bcc Fe at low temperatures and low concentrations is controlled by the nucleation of double kinks. The intrinsic mechanism for SSS occurs when solute atoms directly reduce the nucleation energy barrier for the formation of double kinks. The extrinsic mechanism for SSS occurs when solute atoms reduce the number of interstice atoms, thereby reducing the nucleation energy barrier for double kinks. We calculated the atomic row displacement energy (ARD) and the generalized stacking fault energy (GSF) to clarify the SSS mechanism of the Fe-X (X= Cr, Co, Mo, W) binary alloys. The calculations showed that only Cr can slightly reduce the ARD and GSF energies, while Co, Mo, and W all cause an increase in the ARD and GSF energies. Therefore, according to the intrinsic mechanism of SSS, only Cr causes solid solution softening, while Co, Mo, and W all cause solid solution strengthening. Cr, Mo, and W interact with the surrounding Fe atoms in an antiferromagnetic manner, while Co interacts with Fe in a ferromagnetic manner. Although the ferromagnetic/antiferromagnetic interaction is somewhat correlated with the valence electron number and electron configuration, the nucleation energy barrier is not significantly correlated with them. Further calculations showed that there is a positive correlation between the nucleation energy barrier and the binding energy. The binding energy between Cr and Fe weakens, thus lowering the double kink nucleation energy barrier, while the binding energy between Co, Mo, W, and Fe strengthens, thus increasing the double kink nucleation energy barrier. However, the binding energy did not show a significant correlation with atomic radius or electron configuration, thus the nucleation energy barrier is not significantly correlated with these factors either. Considering the intrinsic mechanism, the increase in the binding energy between Co, Mo, W, and Fe causes the nucleation energy barrier for double kinks to increase, resulting in solid solution strengthening. Therefore, the SSS behavior of the Fe-based binary alloys with Co, Mo, and W at low temperature and low concentration cannot be explained by the intrinsic mechanism, and external mechanisms, such as the effects of interstitial C atoms, need to be considered. On the other hand, the solid solution softening behavior of Cr may be explained by the intrinsic mechanism.

Key words: bcc Fe, Binary alloy, Atomic row displacement(ARD), Generalized stacking fault energy(GSF), Solid solution softening

中图分类号: 

TrendMD: