Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (12): 20250187.doi: 10.7503/cjcu20250187
• Organic Chemistry • Previous Articles Next Articles
REN Shilun1, HUANG Cheng1, CHEN Jianai1, LI Mimi1, MA Jingrui3, YUAN Qiliang2(
), TAN Chengxia1(
)
Received:2025-07-07
Online:2025-12-10
Published:2025-08-05
Contact:
TAN Chengxia
E-mail:yuanqiliang@126.com;tanchengxia@zjut.edu.cn
Supported by:CLC Number:
TrendMD:
REN Shilun, HUANG Cheng, CHEN Jianai, LI Mimi, MA Jingrui, YUAN Qiliang, TAN Chengxia. Continuous Synthesis Process of Key Intermediates for the Herbicide Clethodim[J]. Chem. J. Chinese Universities, 2025, 46(12): 20250187.
| Entry | F1/(mL·min-1) | F2/(mL·min-1) | Temperature/℃ | Molar ratio | Pression/MPa | Residence time/s | Conversion * (%) | Purity * (%) |
|---|---|---|---|---|---|---|---|---|
| 1 | 0.50 | 0.50 | 65 | 1∶1.0 | 0.35 | 20.0 | 68.1 | 67.4 |
| 2 | 0.75 | 0.75 | 65 | 1∶1.0 | 0.35 | 13.3 | 75.3 | 70.2 |
| 3 | 1.00 | 1.00 | 65 | 1∶1.0 | 0.35 | 10.0 | 79.4 | 72.1 |
| 4 | 1.25 | 1.25 | 65 | 1∶1.0 | 0.35 | 8.0 | 72.3 | 71.0 |
| 5 | 1.50 | 1.50 | 65 | 1∶1.0 | 0.35 | 6.7 | 67.0 | 69.5 |
| 6 | 1.75 | 1.75 | 65 | 1∶1.0 | 0.35 | 5.7 | 64.5 | 67.2 |
| 7 | 2.00 | 2.00 | 65 | 1∶1.0 | 0.35 | 5.0 | 60.2 | 66.8 |
| 8 | 1.00 | 1.00 | 65 | 1∶1.0 | 0.35 | 10.0 | 79.1 | 71.1 |
| 9 | 1.00 | 1.00 | 65 | 1∶1.2 | 0.35 | 10.0 | 76.2 | 67.7 |
| 10 | 1.00 | 1.00 | 65 | 1∶1.4 | 0.35 | 10.0 | 77.0 | 69.5 |
| 11 | 1.00 | 1.00 | 65 | 1∶1.6 | 0.35 | 10.0 | 78.1 | 68.8 |
| 12 | 1.00 | 1.00 | 65 | 1∶1.8 | 0.35 | 10.0 | 78.1 | 67.9 |
| 13 | 1.00 | 1.00 | 65 | 1∶2.0 | 0.35 | 10.0 | 79.7 | 70.9 |
| 14 | 1.00 | 1.00 | 65 | 1∶4.0 | 0.35 | 10.0 | 81.6 | 72.6 |
| 15 | 1.00 | 1.00 | 65 | 1∶6.0 | 0.35 | 10.0 | 77.2 | 70.6 |
| 16 | 1.00 | 1.00 | 65 | 1∶1.4 | 0.35 | 10.0 | 77.6 | 53.0 |
| 17 | 1.00 | 1.50 | 65 | 1∶1.4 | 0.35 | 8.0 | 81.9 | 57.0 |
| 18 | 1.00 | 2.00 | 65 | 1∶1.4 | 0.35 | 6.7 | 83.2 | 63.6 |
| 19 | 1.00 | 2.50 | 65 | 1∶1.4 | 0.35 | 5.7 | 82.1 | 62.0 |
| 20 | 1.00 | 3.00 | 65 | 1∶1.4 | 0.35 | 5.0 | 81.8 | 60.6 |
| 21 | 1.00 | 3.50 | 65 | 1∶1.4 | 0.35 | 4.4 | 81.6 | 57.4 |
| 22 | 1.00 | 4.00 | 65 | 1∶1.4 | 0.35 | 4.0 | 81.3 | 55.3 |
Table 1 Optimization of the conditions for the synthesis of compound 3
| Entry | F1/(mL·min-1) | F2/(mL·min-1) | Temperature/℃ | Molar ratio | Pression/MPa | Residence time/s | Conversion * (%) | Purity * (%) |
|---|---|---|---|---|---|---|---|---|
| 1 | 0.50 | 0.50 | 65 | 1∶1.0 | 0.35 | 20.0 | 68.1 | 67.4 |
| 2 | 0.75 | 0.75 | 65 | 1∶1.0 | 0.35 | 13.3 | 75.3 | 70.2 |
| 3 | 1.00 | 1.00 | 65 | 1∶1.0 | 0.35 | 10.0 | 79.4 | 72.1 |
| 4 | 1.25 | 1.25 | 65 | 1∶1.0 | 0.35 | 8.0 | 72.3 | 71.0 |
| 5 | 1.50 | 1.50 | 65 | 1∶1.0 | 0.35 | 6.7 | 67.0 | 69.5 |
| 6 | 1.75 | 1.75 | 65 | 1∶1.0 | 0.35 | 5.7 | 64.5 | 67.2 |
| 7 | 2.00 | 2.00 | 65 | 1∶1.0 | 0.35 | 5.0 | 60.2 | 66.8 |
| 8 | 1.00 | 1.00 | 65 | 1∶1.0 | 0.35 | 10.0 | 79.1 | 71.1 |
| 9 | 1.00 | 1.00 | 65 | 1∶1.2 | 0.35 | 10.0 | 76.2 | 67.7 |
| 10 | 1.00 | 1.00 | 65 | 1∶1.4 | 0.35 | 10.0 | 77.0 | 69.5 |
| 11 | 1.00 | 1.00 | 65 | 1∶1.6 | 0.35 | 10.0 | 78.1 | 68.8 |
| 12 | 1.00 | 1.00 | 65 | 1∶1.8 | 0.35 | 10.0 | 78.1 | 67.9 |
| 13 | 1.00 | 1.00 | 65 | 1∶2.0 | 0.35 | 10.0 | 79.7 | 70.9 |
| 14 | 1.00 | 1.00 | 65 | 1∶4.0 | 0.35 | 10.0 | 81.6 | 72.6 |
| 15 | 1.00 | 1.00 | 65 | 1∶6.0 | 0.35 | 10.0 | 77.2 | 70.6 |
| 16 | 1.00 | 1.00 | 65 | 1∶1.4 | 0.35 | 10.0 | 77.6 | 53.0 |
| 17 | 1.00 | 1.50 | 65 | 1∶1.4 | 0.35 | 8.0 | 81.9 | 57.0 |
| 18 | 1.00 | 2.00 | 65 | 1∶1.4 | 0.35 | 6.7 | 83.2 | 63.6 |
| 19 | 1.00 | 2.50 | 65 | 1∶1.4 | 0.35 | 5.7 | 82.1 | 62.0 |
| 20 | 1.00 | 3.00 | 65 | 1∶1.4 | 0.35 | 5.0 | 81.8 | 60.6 |
| 21 | 1.00 | 3.50 | 65 | 1∶1.4 | 0.35 | 4.4 | 81.6 | 57.4 |
| 22 | 1.00 | 4.00 | 65 | 1∶1.4 | 0.35 | 4.0 | 81.3 | 55.3 |
| Entry | F1/(mL·min-1) | F2/(mL·min-1) | Temperature/℃ | Residence time/s | Conversion*(%) | Purity*(%) |
|---|---|---|---|---|---|---|
| 1 | 1.00 | 1.00 | 65 | 9.0 | 99.7 | 73.0 |
| 2 | 1.00 | 1.25 | 65 | 8.0 | 100.0 | 78.9 |
| 3 | 1.00 | 1.50 | 65 | 7.2 | 100.0 | 80.3 |
| 4 | 1.00 | 1.75 | 65 | 6.5 | 100.0 | 74.7 |
| 5 | 1.00 | 2.00 | 65 | 6.0 | 100.0 | 72.8 |
| 6 | 0.33 | 0.50 | 65 | 21.2 | 88.1 | 64.9 |
| 7 | 0.50 | 0.75 | 65 | 14.4 | 94.2 | 75.5 |
| 8 | 1.00 | 1.50 | 65 | 7.2 | 100.0 | 80.3 |
| 9 | 2.00 | 3.00 | 65 | 3.6 | 72.4 | 66.1 |
| 10 | 3.00 | 4.50 | 65 | 2.4 | 65.9 | 59.8 |
| 11 | 4.00 | 6.00 | 65 | 1.8 | 58.0 | 50.4 |
| 12 | 1.00 | 1.50 | 55 | 7.2 | 95.2 | 66.6 |
| 13 | 1.00 | 1.50 | 60 | 7.2 | 97.9 | 74.9 |
| 14 | 1.00 | 1.50 | 65 | 7.2 | 100.0 | 80.3 |
| 15 | 1.00 | 1.50 | 70 | 7.2 | 100.0 | 77.3 |
| 16 | 1.00 | 1.50 | 75 | 7.2 | 100.0 | 76.7 |
| 17 | 1.00 | 1.50 | 80 | 7.2 | 97.5 | 73.1 |
| 18 | 1.00 | 1.50 | 85 | 7.2 | 96.2 | 69.8 |
Table 2 Optimization of the conditions for the synthesis of compound 3
| Entry | F1/(mL·min-1) | F2/(mL·min-1) | Temperature/℃ | Residence time/s | Conversion*(%) | Purity*(%) |
|---|---|---|---|---|---|---|
| 1 | 1.00 | 1.00 | 65 | 9.0 | 99.7 | 73.0 |
| 2 | 1.00 | 1.25 | 65 | 8.0 | 100.0 | 78.9 |
| 3 | 1.00 | 1.50 | 65 | 7.2 | 100.0 | 80.3 |
| 4 | 1.00 | 1.75 | 65 | 6.5 | 100.0 | 74.7 |
| 5 | 1.00 | 2.00 | 65 | 6.0 | 100.0 | 72.8 |
| 6 | 0.33 | 0.50 | 65 | 21.2 | 88.1 | 64.9 |
| 7 | 0.50 | 0.75 | 65 | 14.4 | 94.2 | 75.5 |
| 8 | 1.00 | 1.50 | 65 | 7.2 | 100.0 | 80.3 |
| 9 | 2.00 | 3.00 | 65 | 3.6 | 72.4 | 66.1 |
| 10 | 3.00 | 4.50 | 65 | 2.4 | 65.9 | 59.8 |
| 11 | 4.00 | 6.00 | 65 | 1.8 | 58.0 | 50.4 |
| 12 | 1.00 | 1.50 | 55 | 7.2 | 95.2 | 66.6 |
| 13 | 1.00 | 1.50 | 60 | 7.2 | 97.9 | 74.9 |
| 14 | 1.00 | 1.50 | 65 | 7.2 | 100.0 | 80.3 |
| 15 | 1.00 | 1.50 | 70 | 7.2 | 100.0 | 77.3 |
| 16 | 1.00 | 1.50 | 75 | 7.2 | 100.0 | 76.7 |
| 17 | 1.00 | 1.50 | 80 | 7.2 | 97.5 | 73.1 |
| 18 | 1.00 | 1.50 | 85 | 7.2 | 96.2 | 69.8 |
| Entry | F1/(mL·min-1) | F2/(mL·min-1) | Temperature/℃ | Pression/MPa | Residence time/s | Conversion*(%) | Purity*(%) |
|---|---|---|---|---|---|---|---|
| 1 | 1.5 | 1.50 | 65 | 0.35 | 4.0 | 78.1 | 50.0 |
| 2 | 1.5 | 1.75 | 65 | 0.35 | 3.7 | 79.4 | 65.9 |
| 3 | 1.5 | 2.00 | 65 | 0.35 | 3.4 | 80.1 | 66.4 |
| 4 | 1.5 | 2.25 | 65 | 0.35 | 3.2 | 85.6 | 69.2 |
| 5 | 1.5 | 2.50 | 65 | 0.35 | 3.0 | 95.1 | 77.7 |
| 6 | 1.5 | 2.75 | 65 | 0.35 | 2.8 | 96.3 | 78.9 |
| 7 | 1.5 | 3.00 | 65 | 0.35 | 2.7 | 97.6 | 80.2 |
| 8 | 1.5 | 3.25 | 65 | 0.35 | 2.5 | 99.2 | 81.4 |
| 9 | 1.5 | 3.50 | 65 | 0.35 | 2.4 | 100.0 | 82.0 |
| 10 | 1.5 | 3.75 | 65 | 0.35 | 2.3 | 90.2 | 72.1 |
| 11 | 1.5 | 4.00 | 65 | 0.35 | 2.2 | 79.1 | 60.1 |
| 12 | 1.5 | 3.50 | 55 | 0.35 | 2.4 | 96.4 | 76.8 |
| 13 | 1.5 | 3.50 | 60 | 0.35 | 2.4 | 98.2 | 79.5 |
| 14 | 1.5 | 3.50 | 65 | 0.35 | 2.4 | 100.0 | 82.0 |
| 15 | 1.5 | 3.50 | 70 | 0.35 | 2.4 | 100.0 | 83.8 |
| 16 | 1.5 | 3.50 | 75 | 0.35 | 2.4 | 100.0 | 84.9 |
| 17 | 1.5 | 3.50 | 80 | 0.35 | 2.4 | 97.3 | 74.4 |
| 18 | 1.5 | 3.50 | 85 | 0.35 | 2.4 | 95.0 | 73.7 |
| 19 | 1.5 | 3.50 | 75 | 0.20 | 2.4 | 92.0 | 70.5 |
| 20 | 1.5 | 3.50 | 75 | 0.25 | 2.4 | 94.7 | 72.6 |
| 21 | 1.5 | 3.50 | 75 | 0.30 | 2.4 | 95.9 | 78.3 |
| 22 | 1.5 | 3.50 | 75 | 0.35 | 2.4 | 100.0 | 84.9 |
| 23 | 1.5 | 3.50 | 75 | 0.40 | 2.4 | 97.3 | 75.2 |
| 24 | 1.5 | 3.50 | 75 | 0.45 | 2.4 | 93.4 | 74.1 |
| 25 | 0.60 | 1.40 | 75 | 0.35 | 6.0 | 82.4 | 59.2 |
| 26 | 0.75 | 1.75 | 75 | 0.35 | 4.8 | 87.3 | 65.7 |
| 27 | 1.00 | 2.33 | 75 | 0.35 | 3.6 | 93.1 | 72.6 |
| 28 | 1.50 | 3.50 | 75 | 0.35 | 2.4 | 100.0 | 84.9 |
| 29 | 2.25 | 5.25 | 75 | 0.35 | 1.6 | 97.3 | 75.2 |
| 30 | 3.00 | 7.00 | 75 | 0.35 | 1.2 | 90.1 | 70.3 |
Table 3 Optimization of the conditions for the synthesis of compound 3
| Entry | F1/(mL·min-1) | F2/(mL·min-1) | Temperature/℃ | Pression/MPa | Residence time/s | Conversion*(%) | Purity*(%) |
|---|---|---|---|---|---|---|---|
| 1 | 1.5 | 1.50 | 65 | 0.35 | 4.0 | 78.1 | 50.0 |
| 2 | 1.5 | 1.75 | 65 | 0.35 | 3.7 | 79.4 | 65.9 |
| 3 | 1.5 | 2.00 | 65 | 0.35 | 3.4 | 80.1 | 66.4 |
| 4 | 1.5 | 2.25 | 65 | 0.35 | 3.2 | 85.6 | 69.2 |
| 5 | 1.5 | 2.50 | 65 | 0.35 | 3.0 | 95.1 | 77.7 |
| 6 | 1.5 | 2.75 | 65 | 0.35 | 2.8 | 96.3 | 78.9 |
| 7 | 1.5 | 3.00 | 65 | 0.35 | 2.7 | 97.6 | 80.2 |
| 8 | 1.5 | 3.25 | 65 | 0.35 | 2.5 | 99.2 | 81.4 |
| 9 | 1.5 | 3.50 | 65 | 0.35 | 2.4 | 100.0 | 82.0 |
| 10 | 1.5 | 3.75 | 65 | 0.35 | 2.3 | 90.2 | 72.1 |
| 11 | 1.5 | 4.00 | 65 | 0.35 | 2.2 | 79.1 | 60.1 |
| 12 | 1.5 | 3.50 | 55 | 0.35 | 2.4 | 96.4 | 76.8 |
| 13 | 1.5 | 3.50 | 60 | 0.35 | 2.4 | 98.2 | 79.5 |
| 14 | 1.5 | 3.50 | 65 | 0.35 | 2.4 | 100.0 | 82.0 |
| 15 | 1.5 | 3.50 | 70 | 0.35 | 2.4 | 100.0 | 83.8 |
| 16 | 1.5 | 3.50 | 75 | 0.35 | 2.4 | 100.0 | 84.9 |
| 17 | 1.5 | 3.50 | 80 | 0.35 | 2.4 | 97.3 | 74.4 |
| 18 | 1.5 | 3.50 | 85 | 0.35 | 2.4 | 95.0 | 73.7 |
| 19 | 1.5 | 3.50 | 75 | 0.20 | 2.4 | 92.0 | 70.5 |
| 20 | 1.5 | 3.50 | 75 | 0.25 | 2.4 | 94.7 | 72.6 |
| 21 | 1.5 | 3.50 | 75 | 0.30 | 2.4 | 95.9 | 78.3 |
| 22 | 1.5 | 3.50 | 75 | 0.35 | 2.4 | 100.0 | 84.9 |
| 23 | 1.5 | 3.50 | 75 | 0.40 | 2.4 | 97.3 | 75.2 |
| 24 | 1.5 | 3.50 | 75 | 0.45 | 2.4 | 93.4 | 74.1 |
| 25 | 0.60 | 1.40 | 75 | 0.35 | 6.0 | 82.4 | 59.2 |
| 26 | 0.75 | 1.75 | 75 | 0.35 | 4.8 | 87.3 | 65.7 |
| 27 | 1.00 | 2.33 | 75 | 0.35 | 3.6 | 93.1 | 72.6 |
| 28 | 1.50 | 3.50 | 75 | 0.35 | 2.4 | 100.0 | 84.9 |
| 29 | 2.25 | 5.25 | 75 | 0.35 | 1.6 | 97.3 | 75.2 |
| 30 | 3.00 | 7.00 | 75 | 0.35 | 1.2 | 90.1 | 70.3 |
| Entry | F1/(mL·min-1) | F2/(mL·min-1) | Temperature/℃ | Pression/MPa | Residence time/s | Conversion*(%) | Purity*(%) |
|---|---|---|---|---|---|---|---|
| 1 | 1.5 | 0.5 | 55 | 0.35 | 6.0 | 77.1 | 58.1 |
| 2 | 1.5 | 1.0 | 55 | 0.35 | 4.8 | 79.2 | 55.2 |
| 3 | 1.5 | 1.5 | 55 | 0.35 | 4.0 | 81.0 | 61.4 |
| 4 | 1.5 | 2.0 | 55 | 0.35 | 3.4 | 94.0 | 70.7 |
| 5 | 1.5 | 2.5 | 55 | 0.35 | 3.0 | 95.2 | 72.6 |
| 6 | 1.5 | 3.0 | 55 | 0.35 | 2.7 | 95.4 | 81.5 |
| 7 | 1.5 | 3.5 | 55 | 0.35 | 2.4 | 100.0 | 90.3 |
| 8 | 1.5 | 4.0 | 55 | 0.35 | 2.2 | 98.5 | 89.1 |
| 9 | 1.5 | 4.5 | 55 | 0.35 | 2.0 | 93.4 | 87.2 |
| Entry | F1/(mL·min-1) | F2/(mL·min-1) | Temperature/℃ | Pression/MPa | Residence time/s | Conversion*(%) | Purity*(%) |
| 10 | 1.5 | 3.5 | 25 | 0.35 | 2.4 | 63.1 | 46.3 |
| 11 | 1.5 | 3.5 | 35 | 0.35 | 2.4 | 74.0 | 65.2 |
| 12 | 1.5 | 3.5 | 45 | 0.35 | 2.4 | 81.2 | 84.7 |
| 13 | 1.5 | 3.5 | 55 | 0.35 | 2.4 | 100.0 | 90.2 |
| 14 | 1.5 | 3.5 | 65 | 0.35 | 2.4 | 100.0 | 83.4 |
| 15 | 1.5 | 3.5 | 75 | 0.35 | 2.4 | 100.0 | 79.2 |
| 16 | 0.60 | 1.40 | 55 | 0.35 | 6.0 | 87.1 | 85.4 |
| 17 | 0.75 | 1.75 | 55 | 0.35 | 4.8 | 89.5 | 87.2 |
| 18 | 1.00 | 2.33 | 55 | 0.35 | 3.6 | 95.4 | 88.3 |
| 19 | 1.50 | 3.50 | 55 | 0.35 | 2.4 | 100.0 | 90.6 |
| 20 | 2.25 | 5.25 | 55 | 0.35 | 1.6 | 98.7 | 89.8 |
| 21 | 3.00 | 7.00 | 55 | 0.35 | 1.2 | 79.2 | 84.1 |
Table 4 Optimization of the conditions for the synthesis of compound 4
| Entry | F1/(mL·min-1) | F2/(mL·min-1) | Temperature/℃ | Pression/MPa | Residence time/s | Conversion*(%) | Purity*(%) |
|---|---|---|---|---|---|---|---|
| 1 | 1.5 | 0.5 | 55 | 0.35 | 6.0 | 77.1 | 58.1 |
| 2 | 1.5 | 1.0 | 55 | 0.35 | 4.8 | 79.2 | 55.2 |
| 3 | 1.5 | 1.5 | 55 | 0.35 | 4.0 | 81.0 | 61.4 |
| 4 | 1.5 | 2.0 | 55 | 0.35 | 3.4 | 94.0 | 70.7 |
| 5 | 1.5 | 2.5 | 55 | 0.35 | 3.0 | 95.2 | 72.6 |
| 6 | 1.5 | 3.0 | 55 | 0.35 | 2.7 | 95.4 | 81.5 |
| 7 | 1.5 | 3.5 | 55 | 0.35 | 2.4 | 100.0 | 90.3 |
| 8 | 1.5 | 4.0 | 55 | 0.35 | 2.2 | 98.5 | 89.1 |
| 9 | 1.5 | 4.5 | 55 | 0.35 | 2.0 | 93.4 | 87.2 |
| Entry | F1/(mL·min-1) | F2/(mL·min-1) | Temperature/℃ | Pression/MPa | Residence time/s | Conversion*(%) | Purity*(%) |
| 10 | 1.5 | 3.5 | 25 | 0.35 | 2.4 | 63.1 | 46.3 |
| 11 | 1.5 | 3.5 | 35 | 0.35 | 2.4 | 74.0 | 65.2 |
| 12 | 1.5 | 3.5 | 45 | 0.35 | 2.4 | 81.2 | 84.7 |
| 13 | 1.5 | 3.5 | 55 | 0.35 | 2.4 | 100.0 | 90.2 |
| 14 | 1.5 | 3.5 | 65 | 0.35 | 2.4 | 100.0 | 83.4 |
| 15 | 1.5 | 3.5 | 75 | 0.35 | 2.4 | 100.0 | 79.2 |
| 16 | 0.60 | 1.40 | 55 | 0.35 | 6.0 | 87.1 | 85.4 |
| 17 | 0.75 | 1.75 | 55 | 0.35 | 4.8 | 89.5 | 87.2 |
| 18 | 1.00 | 2.33 | 55 | 0.35 | 3.6 | 95.4 | 88.3 |
| 19 | 1.50 | 3.50 | 55 | 0.35 | 2.4 | 100.0 | 90.6 |
| 20 | 2.25 | 5.25 | 55 | 0.35 | 1.6 | 98.7 | 89.8 |
| 21 | 3.00 | 7.00 | 55 | 0.35 | 1.2 | 79.2 | 84.1 |
| Step | AE(%) | RME(%) | PMI/(g·g-1) | E/(g·g-1) |
|---|---|---|---|---|
| 1 | 55.1 | 18.9 | 21.4 | 20.4 |
| 2⁃Batch | 57.5 57.5 | 28.9 | 19.7 | 18.7 |
| 2⁃Continuous | 35.3 | 4.3 | 3.3 | |
| 3 | 69.8 | 75.1 | 3.7 | 2.7 |
| 4 | 100.0 | 69.8 | 4.6 | 3.6 |
Table 5 Sustainability metrics of the self-continuous flow synthesis of Jing-Santong
| Step | AE(%) | RME(%) | PMI/(g·g-1) | E/(g·g-1) |
|---|---|---|---|---|
| 1 | 55.1 | 18.9 | 21.4 | 20.4 |
| 2⁃Batch | 57.5 57.5 | 28.9 | 19.7 | 18.7 |
| 2⁃Continuous | 35.3 | 4.3 | 3.3 | |
| 3 | 69.8 | 75.1 | 3.7 | 2.7 |
| 4 | 100.0 | 69.8 | 4.6 | 3.6 |
| [1] | Ma H. N., Wang K. H., Wang B. B., Wang Z. W., Liu Y. X., Wang Q. M., J. Agric. Food Chem., 2024, 72(9), 4658—4668 |
| [2] | Chaudhary P., Xu M., Ahamad L., Chaudhary A., Kumar G., Adeleke B. S., Verma K. K., Hu D.M., Širić I., Kumar P., Popescu S. M., Abou Fayssal S., Agronomy⁃Basel, 2023, 13(3), 643 |
| [3] | Pretty J., Bharucha Z. P., Insects, 2015, 6(1), 152—182 |
| [4] | Devine M. D., Hall J. C., Romano M. L., Marles M. A. S., Thomson L. W., Shimabukuro R. H., Pestic. Biochem. Phys., 1993, 45(3), 167—177 |
| [5] | Fang H., Shangguan X. L., Cen J. J., Liu Y. L., Xie J. X., Xia Y. E., Zhejiang Chemical Industry, 2007, 38(9), 24—26 |
| 方华, 上官小来, 岑江杰, 刘亚玲, 谢菊仙, 夏月娥. 浙江化工, 2007, 38(9), 24—26 | |
| [6] | Qian Y., Study on Synthesis and Process Optimization of Clethodim, Nanjing University of Science and Technology, Nanjing, 2013 |
| 钱云. 烯草酮的合成及其工艺优化. 南京: 南京理工大学, 2013 | |
| [7] | Ren K. T., Yu A. M., Yang H. Z., Pestic. Transl., 1998, (5), 32—37, 14 |
| 任康太, 喻爱明, 杨华铮. 农药译丛, 1998, (5), 32—37, 14 | |
| [8] | Yang Y. T., Gao S., Zhang Z. J., Lin C. F., Ma H. J., Li M., Sun B. X., Pesticides, 2005, 44(4), 186—189 |
| 杨玉廷, 高爽, 张宗俭, 林长福, 马宏娟, 李鸣, 孙宝祥. 农药, 2005, 44(4), 186—189 | |
| [9] | Guo L. H., Wang P., Mod. Pestic., 2006, 5(1), 5—8 |
| 郭林华, 王鹏. 现代农药. 2006, 5(1), 5—8 | |
| [10] | Zhang X., Tu B., Dai L. R., Lawson P. A, Zheng Z. Z., Liu L. Y., Deng Y., Zhang H., Cheng L., Int. J. Syst. Evol. Microbiol., 2018, 68(9), 3197—3211 |
| [11] | Hirooka T., Nagase H., Uchida K., Hiroshige Y., Ehara Y., Nishikawa J., Nishihara T., Miyamoto K., Hirata Z., Environ. Toxicol. Chem., 2005, 24(8), 1896—1901 |
| [12] | Chauhan B. S., Johnson D. E., Weed Sci., 2009, 57(4), 379—385 |
| [13] | Xiong Y. B., Guo Q. Q., Ma X. R., Liu X. K., Zhou Z. Q., Wang P., Liu D. H., Chin. J. Pestic. Sci., 2024, 26(5), 994—1001 |
| 熊亚兵, 郭琪琪, 马小然, 刘雪科, 周志强, 王鹏, 刘东晖. 农药学学报, 2024, 26(5), 994—1001 | |
| [14] | Depetris M. B., Padilla E. M., Ayala F., Tuesca D., Breccia G., Pest Manag. Sci., 2024, 80(12), 6600—6606 |
| [15] | Cui S., Hough R., Fu Q., Qi X. B., Liu D., Cooper P., Li P., Zhang Z. L., Ecotoxicol. Environ. Saf., 2019, 182, 109428 |
| [16] | Jankowska M., Kaczyński P., Łozowicka B., Sci. Rep., 2020, 10(1), 1323 |
| [17] | Xiao Y., Study on Synthesis of Clethodim, Hebei of Science and Technology, Shijiazhuang, 2021 |
| 肖园. 烯草酮的合成研究, 石家庄: 河北科技大学, 2021 | |
| [18] | Wang X. Q., Li K., Li Z., Mu J., Wang Q., Liang M. Y., Song P., Lu X. H., Oxidation Method for Degrading Process Wastewater Containing Imidazolinone Herbicides, ZL 200910170018.5, 2013⁃12⁃28 |
| 王现全, 李凯, 李壮, 穆杰, 王强, 梁梦媛, 宋鹏, 卢仙慧. 降解工艺咪唑啉酮类除草剂废水的氧化方法, ZL 200910170018.5, 2013-12-28 | |
| [19] | Chen F. E., Tan C. X., Wu K. C., Ke M. L., Wu G. Z., Wu J. H., Yong X. F., Wang S. Z., Ju Z. R., Xiao X., Chen J. A., Microreaction System and Method for Continuous Synthesis of Clethodim Intermediate 5⁃[2⁃(Ethylthio)propyl]⁃3⁃hydroxy⁃2⁃cyclohexen⁃1⁃one, CN 202311657104.5, 2024⁃03⁃12 |
| 陈芬儿, 谭成侠, 吴克崇, 柯淼林, 吴贯中, 吴军辉, 雍学锋, 王士钊, 鞠志冉, 肖霄, 陈见爱. 一种连续合成烯草酮中间体5⁃[2⁃(乙硫基)丙基]⁃3⁃羟基⁃2⁃环己烯⁃1⁃酮的微反应系统及方法, CN202311657104.5, 2024⁃03⁃12 | |
| [20] | Sun G. Q., Cheng Z. M., Mod. Pestic., 2011, 10(1), 24—26 |
| 孙光强, 程志明. 现代农药, 2011, 10(1), 24—26 | |
| [21] | He T., Ma X. B., Xu Z. H., Wang Z. Y., Prog. Chem., 2016, 28(6), 829—838 |
| 何涛, 马小波, 徐志宏, 王周玉. 化学进展, 2016, 28(6), 829—838 | |
| [22] | Yang Q., Li W. Q., Huang S. T., Li J. P., Liu T., Huang C., Chem. J. Chinese Universities, 2023, 44(6), 20220671 |
| 杨棋, 李伟强, 黄顺桃, 李靖鹏, 刘腾, 黄超. 高等学校化学学报, 2023, 44(6), 20220671 | |
| [23] | Yi H. L., Chin. J. Appl. Chem., 2024, 41(11), 1535—1551 |
| 伊绘霖. 应用化学, 2024, 41(11), 1535—1551 | |
| [24] | Wu J. H., Wu J. J., Pan S. Y., Chen J. A., Tan C. X., Chem. J. Chinese Universities, 2025, 46(7), 20250053 |
| 吴军辉, 吴佳佳, 潘双叶, 陈见爱, 谭成侠. 高等学校化学学报, 2025, 46(7), 20250053 | |
| [25] | Liang C. M., Lin W. X., Lin Z. L., Yu R. X., Kang Y. Y., Sang X. M., Sun M. L., Ma Y. Y., Cheng R. H., Ye J. X., React. Chem. Eng., 2025, 10(6), 1359—1364 |
| [26] | Cantillo D., Wolf B., Goetz R., Kappe C. O., Org. Process Res. Dev., 2017, 21(1), 125—132 |
| [27] | Zhang J. W., Zhou Y. W., Chen Z., Xu J. H., CIESC J., 2022, 73(8), 3472—3482 |
| 张经纬, 周弋惟, 陈卓, 徐建鸿. 化工学报, 2022, 73(8), 3472—3482 | |
| [28] | Cambié D., Bottecchia C., Straathof N. J. W., Hessel V, Noël T., Chem. Rev., 2016, 116(17), 10276—10341 |
| [29] | Reichart B., Kappe C. O., Glasnov T. N., Synlett, 2013, 24(18), 2393—2396 |
| [30] | Hessel V., Lowe H., Schönfeld F., Chem. Eng. Sci., 2005, 60(8/9), 2479—2501 |
| [31] | Feng K. B., Chen J., Gu S. X., Wang H. F., Chen F. E., Chin. J. Org. Chem., 2024, 44(2), 378—397 |
| 冯康博, 陈炯, 古双喜, 王海峰, 陈芬儿. 有机化学, 2024, 44(2), 378—397 |
| [1] | DU Ruikui, GAO Baojiao, MEN Jiying. Carboxyl Functionalized Microfiltration Membrane PSF-g-PMAA: Preparation, Rejection and Removal Properties for Triazine Herbicides [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220695. |
| [2] | PIAO Huilan,MA Pinyi,QIN Zucheng,JIANG Yanxiao,SUN Ying,WANG Xinghua,SONG Daqian. Determination of Triazine Herbicides from Fruit Juice Samples Using Effervescence Assisted Microextraction Method Based on Acidic Ionic Liquid Packed Syringe [J]. Chem. J. Chinese Universities, 2020, 41(2): 228. |
| [3] | WANG Liang, ZHANG Chao, ZHONG Mingjing, QIAN Ping. Theoretical Studies on the Phenoxyalkanoic Herbicides Adsorption on Kaolinite Surface† [J]. Chem. J. Chinese Universities, 2015, 36(7): 1358. |
| [4] | SHAO Yongni, JIANG Linjun, PAN Jian, HE Yong. dentification of Glyphosate and Butachlor by Detecting Chlorella Pyrenoidosa with Raman Microspectroscopy† [J]. Chem. J. Chinese Universities, 2015, 36(6): 1082. |
| [5] | WANG Rui-Jian, ZHENG Liang-Yu*, YANG Xue-Ying, YANG Ye, WANG Xiao-Juan, CAO Shu-Gui*. Expression of ACCase CT Domain in E.coli and Interaction with Herbicide [J]. Chem. J. Chinese Universities, 2011, 32(12): 2817. |
| [6] |
WANG Jin-Cheng1,2; XU Qing1; XUE Xing-Ya1; ZHANG Fei-Fang1; LIANG Xin-Miao1*. Preparation of Molecularly Imprinted Polymer and Its Recognition Property for Phenylurea Herbicides [J]. Chem. J. Chinese Universities, 2006, 27(7): 1227. |
| [7] | HAN Lei, SHU Tong, SUN Feng-Long, CHANG Jing. Gas\|phase Reaction of Herbicide 2-Methyl|4|chlorophenoxy Acetic Acid(MCPA) with OH Radicals [J]. Chem. J. Chinese Universities, 2006, 27(1): 112. |
| [8] | FAN Zhi-Jin, QIAN Chuan-Fan, AI Ying-Wei, CHEN Jun-Peng, LI Zheng-Ming. Identification and Quantification Analysis of Active Ingredient and Main Impurities in Monosulfuron [J]. Chem. J. Chinese Universities, 2005, 26(2): 235. |
| [9] | MA Ning, LI Peng-Fei, LI Yong-Hong, LI Zheng-Ming, WANG Ling-Xiu, WANG Su-Hua . Synthesis and Biological Activity of New Phenylsulfonylurea Derivatives [J]. Chem. J. Chinese Universities, 2004, 25(12): 2259. |
| [10] | ZHANG Xian, ZHANG Hui, WEI Min, Evans D. G., DUAN Xue . Release Properties of Glyphosate from a Supramolecular Glyphosate Intercalated MgAl-LDH [J]. Chem. J. Chinese Universities, 2004, 25(10): 1869. |
| [11] | LI Jian-Ping, PENG Tu-Zhi, HE Xiao-Rong, XIAO Hai-Jun . A Thylakoid Membrane Biosensor Based on the Antagonism of Thylakoid-bound Enzymes for Determining Herbicide [J]. Chem. J. Chinese Universities, 2003, 24(3): 404. |
| [12] | SUN Wei-Guo, CHEN De-Zhao, CHEN Ya-Qiu, HU Shang-Xu . Model Building with Neural Networks Based on Genetic Algorithms for Structure-activity Relationships of Pesticide [J]. Chem. J. Chinese Universities, 1998, 19(6): 871. |
| [13] | REN Tian-Rui, CHEN Hong-Ming, XIE Gui-Rong, ZHOU Jia-Ju, CHEN Fu-Heng . Comparative Molecular Field Analysis of Triazolopyrimidine Sulfonaniline Herbicides [J]. Chem. J. Chinese Universities, 1998, 19(12): 1950. |
| [14] | WANG Xia, YUAN Man-Xue, LAI Cheng-Ming, LIU Jie, LI Zheng-Ming. Using Molecular Graphics, Molecular Mechanics, Quantum Chemistry and Electrostatic Potential Methods to Study Structure-Property Relationship on Pesticides(Ⅸ)─Effect of Selecting Structural Parameters and Calculating Methods on Improving the Acc [J]. Chem. J. Chinese Universities, 1997, 18(1): 60. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||