Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (8): 20250096.doi: 10.7503/cjcu20250096
• Physical Chemistry • Previous Articles Next Articles
ZHANG Senchong1,2, LYU Jitao2, WANG Sen1(), LYU Jilei3, WANG Shaolong4, WANG Yawei2,5
Received:
2025-04-02
Online:
2025-08-10
Published:
2025-04-28
Contact:
WANG Sen
E-mail:wangsen@nwu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Senchong, LYU Jitao, WANG Sen, LYU Jilei, WANG Shaolong, WANG Yawei. Electrochemical Removal of PFAS by Boron-doped Diamond Electrode[J]. Chem. J. Chinese Universities, 2025, 46(8): 20250096.
Treatment method | Conditions of treatment | Degradation rate(%) | Degradation time/h | Ref. |
---|---|---|---|---|
Sonolysis | 700 kHz, 100 W/L | 37 | 5 | [ |
Ozonation | With UV 254 nm, TiO2 | 99.1 | 4 | [ |
Persulfate oxidation | 2 mmol/L Persulfate, 50 ℃, pH=2 | 89.9 | 100 | [ |
0.3 mol/L Persulfate, H2O2, Fe⁃modified diatomite, | 70 | 6 | [ | |
Photocatalytic | 254 nm, TiO2, oxalate | 90 | 3.5 | [ |
200—400 nm, Sb2O3⁃TiO2 | 81.7 | 2 | [ | |
254 nm, Ti3C2/TiO2 | 70 | 8 | [ | |
Electrochemical | Ti, 1.4 g/L NaClO4, | 0 | 3 | [ |
Nb/BDD, 21.4 mA/cm2, 14.2 g/L Na2SO4 Pb/Ti4O7, 10 mA/cm2, 50 mmol/L Na2SO4, 50 mg/L PFOA | 97.3 86.7 | 4 0.5 | [ [ |
Table 1 Degradation effect of different degradation techniques on 10 mg/L PFOA
Treatment method | Conditions of treatment | Degradation rate(%) | Degradation time/h | Ref. |
---|---|---|---|---|
Sonolysis | 700 kHz, 100 W/L | 37 | 5 | [ |
Ozonation | With UV 254 nm, TiO2 | 99.1 | 4 | [ |
Persulfate oxidation | 2 mmol/L Persulfate, 50 ℃, pH=2 | 89.9 | 100 | [ |
0.3 mol/L Persulfate, H2O2, Fe⁃modified diatomite, | 70 | 6 | [ | |
Photocatalytic | 254 nm, TiO2, oxalate | 90 | 3.5 | [ |
200—400 nm, Sb2O3⁃TiO2 | 81.7 | 2 | [ | |
254 nm, Ti3C2/TiO2 | 70 | 8 | [ | |
Electrochemical | Ti, 1.4 g/L NaClO4, | 0 | 3 | [ |
Nb/BDD, 21.4 mA/cm2, 14.2 g/L Na2SO4 Pb/Ti4O7, 10 mA/cm2, 50 mmol/L Na2SO4, 50 mg/L PFOA | 97.3 86.7 | 4 0.5 | [ [ |
[1] | Li X. J., Qi D., Zhang C., Shen X. F., Zhang H. H., Su L. H., Zhang S. H., Guo R. X., Environ. Chem., 2024, 43(8), 2555—2570 |
李学健, 漆丹, 张成, 申秀芳, 张后虎, 苏良湖, 张圣虎, 郭瑞昕. 环境化学, 2024, 43(8), 2555—2570 | |
[2] | Zhang C. H., Liu Y., Tang J. W., Wang W. Q., Tang Y. H., Xu B., Deng J. J., Jia G. R., Wang J., Wei W., Yang L. H., China Environ. Sci., 2021, 41(3), 1109—1118 |
张春晖, 刘育, 唐佳伟, 王文倩, 唐元晖, 许斌, 邓建军, 贾广如, 王健, 魏巍, 杨林浩. 中国环境科学, 2021, 41(3), 1109—1118 | |
[3] | Liu R., Liu M., Zhao C., Fu J., Zhou W., Zhang Q., Martin H., Dong Y., Chem. Res. Chinese Universities, 2023, 39(3), 492—501 |
[4] | Leung S. C. E., Shukla P., Chen D., Eftekhari E., An H., Zare F., Ghasemi N., Zhang D., Nguyen N., Li Q., Sci. Total Environ., 2022, 827, 153669 |
[5] | Liu X., Yang T., Lei Q. X., Qian L., Zhao H. Y., Environ. Chem., 2024, 43(8), 2517—2538 |
刘煦, 杨田, 雷秋霞, 钱霖, 赵红颖. 环境化学, 2024, 43(8), 2517—2538 | |
[6] | Fang C., Sobhani Z., Niu J., Naidu R., Chemosphere, 2019, 219, 36—44 |
[7] | Lin H., Niu J., Ding S., Zhang L., Water Res., 2012, 46(7), 2281—2289 |
[8] | Shi L., Leng C., Zhou Y., Yuan Y., Liu L., Li F., Wang H., Environ. Sci. Pollut. Res., 2024, 31(30), 42593—42613 |
[9] | Sharma S., Shetti N. P., Basu S., Nadagouda M. N., Aminabhavi T. M., Chem. Eng. J., 2022, 430, 132895 |
[10] | Zuo K., Garcia⁃Segura S., Ceerrón⁃Calle G. A., Chen F. Y., Tian X., Wang X., Huang X., Wang H., Alvarez P. J. J., Lou J., Elimelech M., Li Q., Nat. Rev. Mater., 2023, 8(7), 472—490 |
[11] | Wang B. Y., Shi Y. Q., Liu Z. Z., Zhang Y. C., Wang Y. L., Lu Y. X., Wan S. W., Sun X. C., Environ. Sci. Technol., 2022, 45(11), 197—207 |
王波延, 石雨琪, 刘振中, 张义驰, 王玥琅, 陆延宣, 万思文, 孙晓晨, 环境科学与技术, 2022, 45(11), 197—207 | |
[12] | Zhang J., Pang H., Gray S., Ma S., Xie Z., Gao L., J. Environ. Chem. Eng., 2021, 9(4), 105452 |
[13] | Smith S. J., Lauria M., Ahrens L., McCleaf P., Hollman P., Seroka S. B., Hamers T., Arp H. H., Wiberg K., ACS Environ. Sci. Technol. Water, 2023, 3(4), 1201—1211 |
[14] | Lu F. X., Funct. Diamond, 2022, 2(1), 119—141 |
[15] | Feng Y., Lv J., Liu J., Gao N., Peng H., Chen Y., Appl. Surf. Sci., 2011, 257(8), 3433—3439 |
[16] | Lu X. R., Ding M. H., Zhang C., Tang W. Z., Diamond Relat. Mater., 2019, 93, 26—33 |
[17] | Lin X., Liu H., Wang B., Yang W., Wang J., Zhang W., Yuan W., Liu J., Xu Y., Xiong Y., Diamond Relat. Mater., 2025, 154, 112130 |
[18] | He Y., Huang W., Chen R., Zhang W., Lin H., J. Electroanal. Chem., 2015, 758, 170—177 |
[19] | He A., Li J., Li Z., Lu Y., Liang Y., Zhou Z., Man Z., Lv J., Wang Y., Jiang G., Environ. Sci. Technol., 2023, 57(43), 16244—16254 |
[20] | Ferreira N. G., Silval L. G., Corat E. J., Trava⁃Airolidi V. J., Diamond Relat. Mater., 2002, 11(8), 1523—1531 |
[21] | Bogdanowicz R., Fabianska A., Golunski L., Sobaszek M., Ryl J., Darowicki K., Ossowski T., Janssens S. D., Haenen K., Siedlecka E. M., Diamond Relat. Mater., 2013, 39, 82—88 |
[22] | Jia F., Bai Y., Qu F., Zhao J., Zhuang C., Jiang X., Vacuum, 2010, 84(7), 930—934 |
[23] | Long H., Luo H., Luo J., Xie Y., Deng Z., Zhang X., Wang Y., Wei Q. P., Yu Z. M., Mater. Lett., 2015, 157, 34—37 |
[24] | Li H., Zhang T., Li L., Lv X., Li B., Jin Z., Zou G., J. Cryst. Growth, 2010, 312(12/13), 1986—1991 |
[25] | Šelešovská R., Štěpánková M., Janíková L., Nováková K., Vojs M., Marton M., Behúl M., Monatsh. Chem., 2016, 147, 1353—1364 |
[26] | Živcová Z. V., Frank O., Petrák V., Tarábková H., Vacík J., Nesládek M., Kavan L., Electrochim. Acta, 2013, 87, 518—525 |
[27] | Schwarzová⁃Pecková K., Vosáhlová J., Barek J., Šloufová I., Pavlova E., Petrák V., Zavázalová J., Electrochim. Acta, 2017, 243, 170—182 |
[28] | Gao X., Li W., Mei R., Zhu C., Zhou B., Ma L., Wei Q., Liu T., J. Electroanal. Chem., 2019, 832, 247—253 |
[29] | Kewalramani J. A., Marsh R. W., Prajapati D., Meegoda J. N., J. Water Process. Eng., 2023, 53, 103752 |
[30] | Huang J., Wang X., Pan Z., Li X., Ling Y., Li L., Chem. Eng. J., 2016, 296, 329—334 |
[31] | Yin P., Hu Z., Song X., Liu J., Lin N., Int. J. Environ. Res. Public Health, 2016, 136(6), 602 |
[32] | da Silva⁃Rackov C. K., Lawal W. A., Nfodzo P. A., Vianna M. M., do Nascimento C. A., Choi H., Appl. Catal. B: Environ., 2016, 192, 253—259 |
[33] | Wang Y., Zhang P., J. Hazard. Mater., 2011, 192(3), 1869—1875 |
[34] | Yao X., Zuo J., Wang Y. J., Song N. N., Li H. H., Qiu K., Front. Chem., 2021, 9, 690520 |
[35] | Song H., Wang Y., Ling Z., Zu D., Li Z., Shen Y., Li C., Sci. Total Environ., 2020, 749, 141009 |
[36] | Zhuo Q. F., Deng S. B., Xu Z. C, Yu G., Water Res., 2010, 35(5), 1810—1816 |
卓琼芳, 邓述波, 许振成, 余刚, 环境科学, 2010, 35(5), 1810—1816 | |
[37] | Uwayezu J. N., Carabante I., Lejon T., van Hees P., Karlsson P., Hollman P., Kumpiene J., J. Environ. Manage., 2021, 290, 112573 |
[38] | Huang D., Wang K., Niu J., Chu C., Weon S., Zhu Q., Kim J. H., Environ. Sci. Technol., 2020, 54(17), 10954—10963 |
[39] | Alves S. A., Ferreira T. C., Sabatini N. S., Trientini A.C. A., Migliorini F. L., Baldan M. R., Ferreira N. G., Lanza M. R. A., Chemosphere, 2012, 88(2), 155—160 |
[40] | Fabianska A., BogdanowIicz R., Zieba P., Ossowski T., Gnyba M., Ryl J., Zielinski A., Janssens S. D., Haenen K., Siedlecka E. M., Phys. Status Solidi A, 2013, 210(10), 2040—2047 |
[41] | Radjenovic J., Duinslaeger N., Avvvak S. S., Chaplin B. P., Environ. Sci. Technol., 2020, 54(23), 14815—14829 |
[42] | Liu Y., Fan X., Quan X., Fan Y., Chen S., Zhao X., Environ. Sci. Technol., 2019, 53(9), 5195—5201 |
[43] | Karatas O., Kobya M., Khataee A., Yoon Y., Environ. Technol. Inno., 2022, 28, 102954 |
[44] | Farhat A., Keller J., Tait S., Radjenovic J., Environ. Sci. Technol., 2015, 49(24), 14326—14333 |
[45] | Irkham, Watanabe T., Fiorani A., Valenti G., Paolucci F., Einaga Y., J. Am. Chem. Soc., 2016, 138(48), 15636—15641 |
[46] | Yang L., He L., Xue J., Ma Y., Xie Z., Wu L., Huang M., Zhang Z., J. Hazard. Mater., 2020, 393, 122405 |
[47] | Liu F., Kang T., Han B., Zhang Q., Yin Y., Cai Y., Chem. Res. Chinese Universities, 2023, 39(3), 361—369 |
[48] | Mukherjee P., Sathiyan K., Zidki T., Nadagouda M. N., Sharma V. K., Sep. Purif. Technol., 2023, 325, 124639 |
[49] | Li G., Peng M., Huang Q., Huang C. H., Chen Y., Hawkins G., Li K., Front. Environ. Eng., 2025, 4, 1568542 |
[50] | Barisic S., Suri R., Chemosphere, 2020, 243, 125349 |
[1] | GONG Yanxi, WANG Jianbing, CHAI Buyu, HAN Yuanchun, MA Yunfei, JIA Chaomin. Preparation of Potassium Doped g-C3N4 Thin Film Photoanode and Its Application in Photoelectrocatalytic Oxidation of Diclofenac Sodium in Water [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220005. |
[2] | LIANG Longqi, HUANG Weimin, LIN Haibo. Electrochemical Oxidation of Dimethyl Phthalate on Porous Titanium Based Boron-dopped Diamond Electrode† [J]. Chem. J. Chinese Universities, 2015, 36(8): 1606. |
[3] | LI Haili, ZHU Hongqiao, CAO Fahe, LENG Wenhua. Enhanced the Performance of Photoelectrochemical Oxidation of Water over BiVO4 Film Electrodes by Electrochemical Reduction Pretreatment† [J]. Chem. J. Chinese Universities, 2014, 35(2): 377. |
[4] | MA Chun-An, WANG Fen, LU Jin-Jin, LI Mei-Chao, ZHENG Wan-Fang. Studies on Electrochemical Oxidation Reaction of 2,4-Dichlorophenol on Pt Electrode [J]. Chem. J. Chinese Universities, 2013, 34(12): 2850. |
[5] | HUANG Yao, ZHU Zhao-Jin, XU Jing-Kun, LU Bao-Yang, YUE Rui-Rui. Novel Copolymers Synthesis by Second Polymerization of Acrylate Acid Grafted 1,2-Dihydroxylbenzene Derivatives [J]. Chem. J. Chinese Universities, 2012, 33(03): 608. |
[6] | WANG Xuan, HUANG Wei-Min, LIU Xiao-Bo, LU Hai-Yan, LIN Hai-Bo*. Influence of Chloride Ion on Electrochemical Oxidation Degradation of Phenol [J]. Chem. J. Chinese Universities, 2011, 32(2): 361. |
[7] | WANG Gui-Ling1, WANG Jing1, CAO Dian-Xue1*, TANG Yong-Fu1, L Yan-Zhuo1, LU Tian-Hong2, XING Wei2. Performance of Electrochemical Oxidation of Carbon in Molten Carbonates [J]. Chem. J. Chinese Universities, 2008, 29(9): 1829. |
[8] | LIU Xiao-Bo, HUANG Wei-Min , REN Xiu-Bin, DONG Yan-Jie, XU Hong, LIN Hai-Bo*. Effect of Structure-Activity Relationship on Electrochemical Degradation of Substituted Aniline [J]. Chem. J. Chinese Universities, 2007, 28(6): 1131. |
[9] |
WANG Hai-Tao1,2, ZHAO Mei-Ling2, XU Wei-Lin1, XING Wei1, LU Tian-Hong1.
Effect of Rare Earth Ions on Electro-oxidation of Methanol [J]. Chem. J. Chinese Universities, 2007, 28(2): 352. |
[10] | LIN Hai-Bo, LIU Xiao-Bo, SUN Zhi-Quan, ZHANG Heng-Bin. Electrochemical Oxidation-degradation of Phenol on Ti/PbO2 and Ti/Ru-Ti-Sn Oxide Coating Electrodes [J]. Chem. J. Chinese Universities, 2005, 26(9): 1704. |
[11] | DU Bing-Chen, LIU Jing-Hua, XUE Xin-Zhong, XU Wei-Lin, XING Wei, LU Tian-Hong, SANG Ge . Studies on Promoting Catalysis of Sm3+ Towards Oxidation of Methanol on the Pt Electrode [J]. Chem. J. Chinese Universities, 2004, 25(5): 917. |
[12] | LÜ Yan-Zhuo, HAN Fei, LIU Chang-Peng, LI Chang-Zhi, XING Wei, LU Tian-Hong, SANG Ge . Promotion Effect of Heteropoly Acids Modified Electrode to Methanol Electrochemical Oxidation [J]. Chem. J. Chinese Universities, 2004, 25(10): 1909. |
[13] | HE Jian-Bo, LIN Jian-Xin. A Study of Anodic Process of Copper in NaOH Solution [J]. Chem. J. Chinese Universities, 1996, 17(2): 290. |
[14] | Guo Chun-xiao, Huang Chu-bao, Guo Fu-chun, Hou Dong-yan. The Quantum Chemistry Studies on Electrochemical Oxidation-Reduction of FeTPP and CoTPP [J]. Chem. J. Chinese Universities, 1991, 12(9): 1242. |
[15] | Hu Xiao-ya, Leng Zong-zhou, Wang Cheng-yin, Wu Ning . Studies on Determination of Carbohydrate by Oxidation on Glassy Carbon Electrode in Basic Solutions [J]. Chem. J. Chinese Universities, 1991, 12(10): 1316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||