Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (6): 20240054.doi: 10.7503/cjcu20240054
• Review • Previous Articles Next Articles
SHI Wuyi, BAO Yu(), CUI Shuxun(
)
Received:
2024-01-29
Online:
2024-06-10
Published:
2024-03-12
Contact:
BAO Yu, CUI Shuxun
E-mail:baoyu@swjtu.edu.cn;cuishuxun@swjtu.edu.cn
Supported by:
CLC Number:
TrendMD:
SHI Wuyi, BAO Yu, CUI Shuxun. Research Progress on the Molecular Structure of Amorphous Chalcogen Elements[J]. Chem. J. Chinese Universities, 2024, 45(6): 20240054.
Common structural characterization technique | Available structural information | Limitation |
---|---|---|
XRD | Crystal structure information | Unable to resolve the amorphous structure; Difficulty in sample preparation |
Neutron diffraction | Neutron scattering length; nuclear density imaging | Unable to resolve the amorphous structure; low resolution |
Inelastic scattering | Dynamical length scale and other information; excited state information | Complex data analysis; model fitting requirements; difficulty in sample preparation; low resolution |
EM | Morphology information; composition analysis; local structural analysis | Sample damage; limited sample thickness; difficulty in sample preparation |
STM | Surface topological information; atomic arrangement structure; local charge density | High sample conductivity requirement; strict environmental requirements; sample damage |
AFM | Surface topological information; atomic arrangement structure; mechanical property | Slow scanning speed; size effect of probe |
Infrared spectrum | Chemical composition; molecular structure; impurity detection | Transparent sample; complex spectrum; low reso⁃lution; sensitive to sample surface and thickness |
EXAFS | Chemical environment analysis; bond length; coordination number and configuration; oxidation states and coordination bond energies | Sensitive to sample surface; low resolution; complex data analysis |
NMR | Chemical environment analysis; molecular configuration and conformation; molecular dynamics; molecular scale and shape | Low sensitivity; high sample preparation requirements; signal overlap; complex data analysis and simulation |
XPS | Element composition; chemical state; electronic structure | Unable to obtain deep⁃structure information; low resolution |
MS | Molecular mass; structural identification; isotopic distribution | Low sensitivity and resolution; high purity of samples |
Raman spectrum | Molecular vibration information; isotope effect | Weak signal; fluorescent interference; unable to obtain deep⁃structure information |
Table 1 Advantages and disadvantages of common characterization methods for the determination of amorphous substances
Common structural characterization technique | Available structural information | Limitation |
---|---|---|
XRD | Crystal structure information | Unable to resolve the amorphous structure; Difficulty in sample preparation |
Neutron diffraction | Neutron scattering length; nuclear density imaging | Unable to resolve the amorphous structure; low resolution |
Inelastic scattering | Dynamical length scale and other information; excited state information | Complex data analysis; model fitting requirements; difficulty in sample preparation; low resolution |
EM | Morphology information; composition analysis; local structural analysis | Sample damage; limited sample thickness; difficulty in sample preparation |
STM | Surface topological information; atomic arrangement structure; local charge density | High sample conductivity requirement; strict environmental requirements; sample damage |
AFM | Surface topological information; atomic arrangement structure; mechanical property | Slow scanning speed; size effect of probe |
Infrared spectrum | Chemical composition; molecular structure; impurity detection | Transparent sample; complex spectrum; low reso⁃lution; sensitive to sample surface and thickness |
EXAFS | Chemical environment analysis; bond length; coordination number and configuration; oxidation states and coordination bond energies | Sensitive to sample surface; low resolution; complex data analysis |
NMR | Chemical environment analysis; molecular configuration and conformation; molecular dynamics; molecular scale and shape | Low sensitivity; high sample preparation requirements; signal overlap; complex data analysis and simulation |
XPS | Element composition; chemical state; electronic structure | Unable to obtain deep⁃structure information; low resolution |
MS | Molecular mass; structural identification; isotopic distribution | Low sensitivity and resolution; high purity of samples |
Raman spectrum | Molecular vibration information; isotope effect | Weak signal; fluorescent interference; unable to obtain deep⁃structure information |
α⁃S8 | a⁃S | ||
---|---|---|---|
Raman shift/cm-1 | Raman shift/cm-1 | Raman shift/cm-1 | Raman shift/cm-1 |
472.5[ | 475[ | 456.3[ | 460[ |
436.7[ | 440[ | 421.7[ | 425[ |
246.6[ | 248[ | 274.2[ | 275[ |
218.0[ | 220[ | ca. 260, shoulder[ | 260[ |
153.6[ | 150—160[ |
Table 2 Main Raman shift vibrations and stretching frequencies of sulfur allotropes
α⁃S8 | a⁃S | ||
---|---|---|---|
Raman shift/cm-1 | Raman shift/cm-1 | Raman shift/cm-1 | Raman shift/cm-1 |
472.5[ | 475[ | 456.3[ | 460[ |
436.7[ | 440[ | 421.7[ | 425[ |
246.6[ | 248[ | 274.2[ | 275[ |
218.0[ | 220[ | ca. 260, shoulder[ | 260[ |
153.6[ | 150—160[ |
Species | Bond length/nm | Bond angle/(°) | Characteristic Raman spectral peak/cm-1 |
---|---|---|---|
a⁃S | 0.200~0.210[ | 90~120[ | ca. 460[ |
a⁃Se | 0.232~0.250[ | >100[ | Se n : ca. 250[ Se8: ca. 260[ |
a⁃Te | 0.277±0.002[ | 90~120[ | ca. 157[ |
Table 3 Summary of characteristic Raman spectral peaks of amorphous chalcogen elements
Species | Bond length/nm | Bond angle/(°) | Characteristic Raman spectral peak/cm-1 |
---|---|---|---|
a⁃S | 0.200~0.210[ | 90~120[ | ca. 460[ |
a⁃Se | 0.232~0.250[ | >100[ | Se n : ca. 250[ Se8: ca. 260[ |
a⁃Te | 0.277±0.002[ | 90~120[ | ca. 157[ |
Species | rintra/nm | Nintra | DWintra/nm |
---|---|---|---|
t⁃Te | 0.283±0.002 | 2.00 | 0.0054±0.0002 |
a⁃Te | 0.277±0.002 | 1.97±0.20 | 0.0049±0.0002 |
Table 4 Structural parameters of t-Te and a-Te
Species | rintra/nm | Nintra | DWintra/nm |
---|---|---|---|
t⁃Te | 0.283±0.002 | 2.00 | 0.0054±0.0002 |
a⁃Te | 0.277±0.002 | 1.97±0.20 | 0.0049±0.0002 |
1 | Yao F. Y., Guo D. W., Gui M. D., Inorganic Chemistry Series, Science Press, Beijing, 1998, 6—276 |
姚凤仪, 郭德威, 桂明德. 无机化学丛书, 北京: 科学出版社, 1998, 6—276 | |
2 | Krishnamurthi V., Khan H., Ahmed T., Zavabeti A., Tawfik S. A., Jain S. K., Spencer M. J. S., Balendhran S., Crozier K. B., Li Z., Fu L., Mohiuddin M., Low M. X., Shabbir B., Boes A., Mitchell A., McConville C. F., Li Y., KalantarZadeh K., Mahmood N., Walia S., Adv. Mater., 2020, 32(45), 2004247 |
3 | Hu C., Lian C., Zheng S., J. Mol. Catal. A: Chem., 2015, 407, 182—188 |
4 | Zhou Z., Wang J., Zhou S., Cat. Commun., 2008, 9(5), 568—571 |
5 | Syed M. A., Henshaw P. F., J. Chem. Technol. Biotechnol., 2005, 80(2), 119—123 |
6 | Yang Z., Jia D., Zhao Q., ACS Appl. Mater. Inter., 2022, 14(28), 32112—32123 |
7 | Zhu M., Niu G., Tang J., J. Mater. Chem. C, 2019, 7(8), 2199—2206 |
8 | Deka N., Dutta G. K., Curr. Opin. Electrochem., 2023, 38, 101222 |
9 | Liu X., Li Y., Xu X., J. Energy Chem., 2021, 61, 104—134 |
10 | Kang J. K., Park J. W., Kang J., Bull. Korean Chem. Soc., 2019, 40(6), 517—521 |
11 | Li M., Lu J., Amine K., ACS Nano, 2021, 15(5), 8087—8094 |
12 | Wu Y. J., Huang W. Z., Pan J. D., Shi K. X., Liu Q. B., Chem. J. Chinese Universities, 2023, 44(1), 20220619 |
吴钰洁, 黄文治, 潘俊达, 石凯祥, 刘全兵. 高等学校化学学报, 2023, 44(1), 20220619 | |
13 | Geng C. N., Hua W. X., Ling G. W., Tao Y., Zhang C., Yang Q. H., Chem. J. Chinese Universities, 2021, 42(5), 1331—1339 |
耿传楠, 化五星, 凌国维, 陶莹, 张辰, 杨全红. 高等学校化学学报, 2021, 42(5), 1331—1339 | |
14 | Han F. C., Li F. J., Chen L., He L. Y., Jiang Y. N., Xu S. D., Zhang D., Qi L., Chem. J. Chinese Universities, 2022, 43(8), 20220163 |
韩付超, 李福进, 陈良, 贺磊义, 姜玉南, 徐守冬, 张鼎, 其鲁. 高等学校化学学报, 2022, 43(8), 20220163 | |
15 | Wen Z., Cao J., Gu Z., Solid State Ion., 2008, 179(27—32), 1697—1701 |
16 | Medenbach L., Adelhelm P., Electrochemical Energy Storage, 2019, 375(81), 101—125 |
17 | Helms H., Ristau J., Kunz H., Monatsh. Chem., 2000, 131, 165—174 |
18 | Ansari Y., Zhang S., Wen B., Adv. Energy Mater., 2019, 9(1), 1802213 |
19 | Kasap S., Frey J. B., Belev G., Sensors, 2011, 11, 5112—5157 |
20 | Yang Z. N., Yang X. S., J. Guizhou Norm. Univ. Nat. Sci. Ed., 2004, 22(1), 104—112 |
杨占南, 杨小生. 贵州师范大学学报, 自然科学版, 2004, 22(1), 104—112 | |
21 | Cao W., Xu H. P., Chem. Bull., 2013, 76(4), 291—298 |
曹玮, 许华平. 化学通报, 2013, 76(4), 291—298 | |
22 | Pan S. J., Xu H. P., Acta Polym. Sin., 2021, 52(8), 857—866 |
潘烁炯, 许华平. 高分子学报, 2021, 52(8), 857—866 | |
23 | Chang Y., Huang J., Shi S., Xu L., Lin H., Chen T., Adv. Mater., 2023, 35(36), 2212178 |
24 | Anderson A., Smith W., Wheeldon J. F., Chem. Phys. Lett., 1996, 263(1/2), 133—137 |
25 | Eckert B., Steudel R., Elemental Sulfur and Sulfur⁃Rich Compounds II, 2003, 231, 31—98 |
26 | Kalampounias A. G., Andrikopoulos K. S., Yannopoulos S. N., J. Chem. Phys., 2003, 118(18), 8460—8467 |
27 | Crapanzano L., Crichton W. A., Monaco G., Nat. Mater., 2005, 4(7), 550—552 |
28 | Nims C., Cron B., Wetherington M., Macalady J., Cosmidis J., Sci. Rep., 2019, 9(1), 7971 |
29 | Sahu S., Lochab B., ACS Sustain. Chem. Eng., 2022, 10(37), 12355—12364 |
30 | Khan N., Baláž M., Burkitbayev M., Appl. Surf. Sci., 2022, 601, 154122 |
31 | Martin R. M., Lucovsky G., Helliwell K., Phys. Rev. B, 1976, 13(4), 1383—1395 |
32 | Barman S. K., Huda M. N., Asaadi J., Langmuir, 2022, 38(28), 8485—8494 |
33 | Liu D., Han L., Wei R., Phys. Rev. Mater., 2022, 6(10), 103403 |
34 | Shimakawa K., Kolobov A., Elliott S. R., Adv. Phys., 1995, 44(6), 475—588 |
35 | Feltz A. C., Phys. Rev. Lett., 1993, 76, 367—388 |
36 | Yannopoulos S. N., J. Mater. Sci. Mater. Electron., 2020, 31(10), 7565—7595 |
37 | Smith A., Holmes W. B., Hall E. S., J. Am. Chem. Soc., 1905, 27(7), 797—820 |
38 | Lucovsky G., Mooradian A., Taylor W., Solid State Commun., 1967, 5(2), 113—117 |
39 | Brodsky M. H., Gambino R. J., Smith J. E., Phys. Status Solid, 1972, 52(2), 609—614 |
40 | Eisenberg A., Tobolsky A. V., J. Polym., 1960, 46(147), 19—28 |
41 | Steudel R., Eckert B., Elemental Sulfur and Sulfur⁃rich Compounds I, 2003, 2, 1—80 |
42 | Steudel R., Eckert B., J. Chem. Phys., 2004, 121(13), 6573—6574 |
43 | Yannopoulos S. N., Andrikopoulos K. S., J. Chem. Phys., 2004, 121(10), 4747—4758 |
44 | Zhang F., Gong Z., Cai W. H., Polymer, 2022, 240, 124473 |
45 | Song T. Y., Xu J. N., Cheng G. Z., Shi S. H., Inorganic Chemistry, Higher Education Press, Beijing, 2010, 121—249 |
宋天佑, 徐家宁, 程功臻, 史苏华. 无机化学, 北京: 高等教育出版社, 2010, 121—249 | |
46 | Gradie J., Ostro S. J., Thomas P. C., J. Non⁃Cryst. Solids, 1984, 67(1—3), 421—432 |
47 | Greer S. C., Annu. Rev. Phys. Chem., 2002, 53(1), 173—200 |
48 | Kalampounias A. G., Andrikopoulos K. S., Yannopoulos S. N., J. Chem. Phys., 2003, 119(14), 7543—7553 |
49 | Tobolsky A. V., Mac K. W., Beevers R. B., Polymer, 1963, 4, 423—427 |
50 | Das S. R., Ghosh K., Indian J. Phys., 1939, 13, 91—105 |
51 | Stolz M., Winter R., Howells W. S., J. Phys. Condens. Matter, 1994, 6(20), 3619—3628 |
52 | Kalampounias A. G., Kastrissios D. T., Yannopoulos S. N., J. Non⁃Cryst. Solids, 2003, 326, 115—119 |
53 | Ruta B., Monaco G., Giordano V. M., J. Phys. Chem. B, 2011, 115(48), 14052—14063 |
54 | Andrikopoulos K. S., Kalampounias A. G., Falagara O., Yannopoulos S. N., J. Chem. Phys., 2013, 139(12), 124501 |
55 | Rankin G. A., J. Phys. Chem., 1907, 11(1), 1—8 |
56 | Luo H., Ruoff A. L., Phys. Rev. B, 1993, 48(1), 569—572 |
57 | Winter R., Pilgrim W. C., Egelstaff P. A., EPL, 1990, 11(3), 225—228 |
58 | Stillinger F. H., Weber T. A., LaViolette R. A., J. Chem. Phys., 1986, 85, 6460—6469 |
59 | Eckert B., Schumacher R., Jodl H. J., Int. J. High Press. Res., 2000, 17(2), 113—146 |
60 | Blight K. R., Candy R. M., Ralph D. E., Hydrometallurgy, 2009, 99(1/2), 100—104 |
61 | Zhou H. T., Gao X., Zheng P., Qin M., Cao Y., Wang W., Acta Phys. Sin., 2016, 65, 188703 |
周浩天, 高翔, 郑鹏, 秦猛, 曹毅, 王炜. 物理学报, 2016, 65, 188703 | |
62 | Li X., Xue Y. R., Song Y., Zhang W. K., Chem. J. Chinese Universities, 2018, 39(12), 2774—2780 |
李逊, 薛玉瑞, 宋宇, 张文科. 高等学校化学学报, 2018, 39(12), 2774—2780 | |
63 | Lü X. J., Song Y., Zhang W. K., Chem. J. Chinese Universities, 2018, 39(1), 166—171 |
吕秀娟, 宋宇, 张文科. 高等学校化学学报, 2018, 39(1), 166—171 | |
64 | Bao Y., Luo Z. L., Cui S. X., Chem. Soc. Rev., 2020, 49(9), 2799—2827 |
65 | Junker J. P., Rief M., Angew. Chem. Int. Ed., 2010, 49(19), 3306—3309 |
66 | Fu L., Wang H., Li H., CCS Chem., 2019, 1(1), 138—147 |
67 | Geisler M., Netz R., Hugel T., Angew. Chem. Int. Ed., 2010, 49(28), 4730—4733 |
68 | Zhang Y., Xu J., Bao Y., Cui S. X., Chem. J. Chinese Universities, 2022, 43(4), 20210863 |
张勇, 许俊, 鲍雨, 崔树勋. 高等学校化学学报, 2022, 43(4), 20210863 | |
69 | Wan P. C., Lu S., Bao Y., Cui S. X., Chem. J. Chinese Universities, 2023, 44(8), 20230126 |
万鹏程, 陆松, 鲍雨, 崔树勋. 高等学校化学学报, 2023, 44(8), 20230126 | |
70 | Zhang S., Li Z., Bao Y., Lu S., Gong Z., Qian H. J., Cui S. X., ACS Nano, 2023, 17(11), 10958—10964 |
71 | Zhang S., Qian H. J., Liu Z., Ju H., Lu Z. Y., Zhang H., Cui S. X., Angew. Chem. Int. Ed., 2019, 58(6), 1659—1663 |
72 | Boyd R., Nat. Chem., 2011, 3(7), 570 |
73 | Santi C., Bangoli L., Molecules, 2017, 22(12), 1—4 |
74 | Dittrich G., Angew. Chem. Int. Ed., 1975, 87(18), 681—689 |
75 | Schottmiller J., Tabak M., Lucovsky G., J. Non⁃Cryst. Solids, 1970, 4, 80—96 |
76 | Gorman M., Solin S. A., Solid State Commun., 1976, 18(11/12), 1401—1404 |
77 | Lucovsky G., the Physics of Selenium and Tellurium, Springer, New York, 1979, 178—192 |
78 | Carini G., Cutroni M., Galli G., Solid State Commun., 1980, 33(11), 1139—1141 |
79 | Carroll P. J., Lannin J. S., Solid State Commun., 1981, 40(1), 81—84 |
80 | Yannopoulos S. N., Andrikopoulos K. S., Phys. Rev. B, 2004, 69(14), 144206 |
81 | Dash S., Chen P., Boolchand P., J. Chem. Phys., 2017, 146(22), 224506 |
82 | Gomp F., J. Phys. Chem. Sol., 1981, 42(6), 539—544 |
83 | Phillips W. A., Buchenau U., Nücker N., Phys. Rev. Lett., 1989, 63(21), 2381—2384 |
84 | Kamitakahara W. A., Cappelletti R. L., Boolchand P., Halfpap B., Gompf F., Neumann D. A., Mutka H., Phys. Rev. B, 1991, 44(1), 94—100 |
85 | Scopigno T., Di Leonardo R., Ruocco G., Baron A. Q. R., Tsutsui S., Bossard F., Yannopoulos S. N., Phys. Rev. Lett., 2004, 92(2), 025503 |
86 | Yang C. Y., Sayers D. E., Paesler M. A., J. Non⁃Cryst. Solids, 1989, 114, 67—69 |
87 | Depanfilis S., Filipponi A., EPL, 1997, 37(6), 397 |
88 | Kaplow R., Rowe T. A., Averbach B. L., Phys. Rev., 1968, 168(3), 1068—1079 |
89 | Andonov P., J. Non⁃Cryst. Solids, 1982, 47(3), 297—339 |
90 | Stephens R. B., J. Appl. Phys., 1978, 49(12), 5855—5864 |
91 | Stephens R. B., Phys. Rev. B, 1984, 30(9), 5195—5202 |
92 | Echeverrı́a I., Kolek P. L., Plazek D. J., J. Non⁃Cryst. Solids, 2003, 324(3), 242—255 |
93 | Shevchik N. J., Phys. Rev. Lett., 1974, 33(26), 1572—1576 |
94 | Warren W., Dupree R., Phys. Rev. B, 1980, 22(5), 2257 |
95 | Jóvári P., Pusztai L., Phys. Rev. B, 2001, 64(1), 14205 |
96 | Jóvári P., Delaplane R. G., Pusztai L., Phys. Rev. B, 2003, 67(17), 172201 |
97 | Caprion D., Schober H. R., Phys. Rev. B, 2000, 62(6), 3709—3716 |
98 | Hohl D., Jones R. O., Phys. Rev. B, 1991, 43(5), 3856—3870 |
99 | Oligschleger C., Jones R. O., Reimann S. M., Phys. Rev. B, 1996, 53(10), 6165—6173 |
100 | Kirchhoff F., Kresse G., Gillan M. J., Phys. Rev. B, 1998, 57(17), 10482 |
101 | Zhang X., Drabold D. A., Phys. Rev. Lett., 1999, 83(24), 5042—5045 |
102 | Nakamura K., Ikawa A., Phys. Rev. B, 2003, 67(10), 104203 |
103 | Richter H., J. Non⁃Cryst. Solids, 1972, 8, 388—394 |
104 | Griffiths J. E., Solid State Commun., 1982, 43(4), 253—255 |
105 | Misawa M., Suzuki K., J. Phys. Soc. Jpn., 1978, 44(5), 1612—1618 |
106 | Kobashi Y. K. Y., Kodera S. K. S., Jpn. J. Appl. Phys., 1998, 37(5R), 2590—2592 |
107 | Guarneros A. C., Calzadilla O., Barón M. J. A., Mater. Res. Express, 2019, 6(6), 066412 |
108 | Marple M., Badger J., Hung I., Angew. Chem. Int. Ed., 2017, 56(33), 9777—9781 |
109 | Zare B., Nami M., Shahverdi A. R., Biol. Trace. Elem. Res., 2017, 180, 171—181 |
110 | Sarrach D. J., Deneufville J. P., Haworth W. L., J. Non⁃Cryst. Solids, 1976, 22(2), 245—267 |
111 | Housecroft C. E., Catherine H., Alan G., Vib. Spectrosc., 2012, 71, 3—7 |
112 | Vasileiadis T., Dracopoulos V., Kollia M., Sci. Rep., 2013, 3(1), 1209 |
113 | Vasileiadis T., Yannopoulos S. N., J. Appl. Phys., 2014, 116(10), 103510 |
114 | Koma A., Mizuno O., Tanaka S., Phys. Status Solid, 1971, 46(1), 225—233 |
115 | Ruiz⁃Martín M. D., Jiménez R. M., Bermejo F. J., Phys. Rev. B, 2006, 73(9), 094201 |
116 | Pine A. S., Dresselhaus G., Phys. Rev. B, 1971, 4(2), 356—371 |
117 | Ichikawa T., Phys. Status Solid, 1973, 56(2), 707—715 |
118 | Stuke J., J. Non⁃Cryst. Solids, 1970, 4, 1—26 |
119 | Ikemoto H., Miyanaga T., J. Synchrotron Radiat., 2014, 21(2), 409—412 |
120 | Akola J., Jones R. O., Phys. Rev. B, 2012, 85(13), 134103 |
121 | Qiao C., Xu M., Wang S., Scr. Mater., 2021, 202, 114011 |
122 | Lu W., Li Z., Feng M., Zheng L., Liu S., Yan B., Hu J., Xue D., J. Am. Chem. Soc., 2024, 146(9), 6345—6351 |
[1] | ZHU Yingying, YAN Xiaoyu, YU Jing, MAN Wenxin, LIU Feng, ZHOU Ying, MA Xiantao. Catalyst-free and Efficient Synthesis of Disulfanes [J]. Chem. J. Chinese Universities, 2023, 44(6): 20230045. |
[2] | REN Siyuan, GUO Wei, FU Yongzhu. Research Progress of Organosulfur in Rechargeable Batteries [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220729. |
[3] | HAN Xu, BAI Xue, ZHANG Zhong, YANG Yanli, CUI Hong, LIU Shuxia. Synthesis and Deep Desulfurization Activity of Fuel Oil of PW11M@Cu3(BTC)2 Hybrid [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220702. |
[4] | XUE Zhuan, MU Zhonglin, HE Runhe, LI Yongbing, ZHANG Xingxiang. Effects of Amino Content of Aminated Carbon Nanotubes on Specific Capacity of Cathode for Li-sulfur Battery [J]. Chem. J. Chinese Universities, 2023, 44(4): 20220709. |
[5] | HU Pingao, ZHANG Qi, ZHANG Huiru. Theoretical Prediction on the Catalytic Effect of Selenium-deficient WSe2 in Lithium-sulfur Batteries [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220595. |
[6] | WANG Qian, WEI Yi, JIA Hongsheng. Effect of Mo2C/PE Separator on the Performance of Lithium Sulfur Batteries [J]. Chem. J. Chinese Universities, 2023, 44(11): 20230223. |
[7] | WU Yujie, HUANG Wenzhi, PAN Junda, SHI Kaixiang, LIU Quanbing. Design, Regulation and Applications in Lithium-sulfur Battery Cathodes of Yolk-shell Nanoreactors [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220619. |
[8] | YIN Xiaoju, SUN Xun, ZHAO Chenghao, JIANG Bo, ZHAO Chenyang, ZHANG Naiqing. Research Progress of Single Atomic Catalysts in Lithium-sulfur Batteries [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220076. |
[9] | MENG Xianglong, YANG Ge, GUO Hailing, LIU Chenguang, CHAI Yongming, WANG Chunzheng, GUO Yongmei. Synthesis of Nano-zeolite and Its Adsorption Performance for Hydrogen Sulfide [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210687. |
[10] | ZHANG Shiyu, HE Runhe, LI Yongbing, WEI Shijun, ZHANG Xingxiang. Fabrication of Lithium-sulfur Battery Cathode with Radiation Crosslinked Low Molecular Weight of Polyacrylonitrile and the Mechanism of Sulfur Storage [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210632. |
[11] | CHEN Mingsu, ZHANG Huiru, ZHANG Qi, LIU Jiaqin, WU Yucheng. First-principles Study on the Catalytic Effect of Co,P co-Doped MoS2 in Lithium-sulfur Batteries [J]. Chem. J. Chinese Universities, 2021, 42(8): 2540. |
[12] | ZHANG Renli, WANG Yao, YU Zhiquan, SUN Zhichao, WANG Anjie, LIU Yingya. Molybdenum Peroxide Anchored on Fluoronated UiO-66 as Catalyst in the Oxidation of Sulfur Containing Compounds [J]. Chem. J. Chinese Universities, 2021, 42(6): 1914. |
[13] | GENG Chuannan, HUA Wuxing, LING Guowei, TAO Ying, ZHANG Chen, YANG Quanhong. Catalysis in Li-sulfur Battery: Materials and Characterization [J]. Chem. J. Chinese Universities, 2021, 42(5): 1331. |
[14] | XIA Jiahao, XU Huaping. Selenium-containing Surface/interface Chemistry [J]. Chem. J. Chinese Universities, 2021, 42(4): 997. |
[15] | HUANG Yan, ZHANG Shuxin, NULI Yanna, WANG Baofeng, YANG Jun, WANG Jiulin. In⁃situ Growth NiS/nickel Foam as Cathode Current Collector of Magnesium-sulfur Batteries [J]. Chem. J. Chinese Universities, 2021, 42(3): 794. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||