Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (3): 20230448.doi: 10.7503/cjcu20230448
• Organic Chemistry • Previous Articles Next Articles
YAO Tuanli(), WANG Ke, ZHU Shuang, LI Tao
Received:
2023-10-24
Online:
2024-03-10
Published:
2024-01-02
Contact:
YAO Tuanli
E-mail:yaotuanli@sust.edu.cn
Supported by:
CLC Number:
TrendMD:
YAO Tuanli, WANG Ke, ZHU Shuang, LI Tao. Manganese-induced Radical Cyclization of 1-Isocyano-2- [1-(trifluoromethyl)ethenyl]benzenes to Access 4-CF3-Quinoline Derivatives[J]. Chem. J. Chinese Universities, 2024, 45(3): 20230448.
Entry | R | Ar | Time/h | Product | Isolated yield(%) |
---|---|---|---|---|---|
1 | 4⁃CF3 | Ph | 1 | 3ba | 66 |
2 | 4⁃F | Ph | 1 | 3ca | 69 |
3 | 4⁃Cl | Ph | 1 | 3da | 65 |
4 | 4⁃Me | Ph | 1 | 3ea | 50 |
5 | 5⁃Cl | Ph | 1 | 3fa | 64 |
6 | 5⁃Me | Ph | 1 | 3ga | 66 |
7 | 6⁃Me | Ph | 1 | 3ha | 71 |
8 | 6⁃F | Ph | 1 | 3ia | 68 |
9 | Ph | 4⁃CF3C6H4 | 1 | 3ab | 50 |
10 | Ph | 4⁃CNC6H4 | 1 | 3ac | 66 |
11 | Ph | 4⁃ClC6H4 | 1 | 3ad | 64 |
12 | Ph | 4⁃BrC6H4 | 1 | 3ae | 70 |
13 | Ph | 4⁃MeC6H4 | 1 | 3af | 68 |
14 | Ph | 4⁃OMeC6H4 | 1 | 3ag | 63 |
15 | Ph | 3⁃NO2C6H4 | 1 | 3ah | 57 |
Entry | R | Ar | Time/h | Product | Isolated yield(%) |
16 | Ph | 3⁃CO2MeC6H4 | 1 | 3ai | 60 |
17 | Ph | 3⁃FC6H4 | 1 | 3aj | 73 |
18 | Ph | 3⁃ClC6H4 | 1 | 3ak | 70 |
19 | Ph | 2⁃CO2MeC6H4 | 1 | 3al | 82 |
20 | Ph | 2⁃MeC6H4 | 1 | 3am | 78 |
21 | Ph | 1⁃Naphthyl | 1 | 3an | 80 |
22 | Ph | 2⁃Naphthyl | 1 | 3ao | 63 |
23 | Ph | 3⁃Thienyl | 1 | 3ap | 64 |
24 | Ph | 2⁃Furan | 1 | 3aq | 46 |
25 | Ph | Cyclopentene 1⁃yl | 1 | 3ar | 55 |
26 | Ph | Cyclohexyl | 1 | 3as | 0 |
Table 1 Study of substrate scope
Entry | R | Ar | Time/h | Product | Isolated yield(%) |
---|---|---|---|---|---|
1 | 4⁃CF3 | Ph | 1 | 3ba | 66 |
2 | 4⁃F | Ph | 1 | 3ca | 69 |
3 | 4⁃Cl | Ph | 1 | 3da | 65 |
4 | 4⁃Me | Ph | 1 | 3ea | 50 |
5 | 5⁃Cl | Ph | 1 | 3fa | 64 |
6 | 5⁃Me | Ph | 1 | 3ga | 66 |
7 | 6⁃Me | Ph | 1 | 3ha | 71 |
8 | 6⁃F | Ph | 1 | 3ia | 68 |
9 | Ph | 4⁃CF3C6H4 | 1 | 3ab | 50 |
10 | Ph | 4⁃CNC6H4 | 1 | 3ac | 66 |
11 | Ph | 4⁃ClC6H4 | 1 | 3ad | 64 |
12 | Ph | 4⁃BrC6H4 | 1 | 3ae | 70 |
13 | Ph | 4⁃MeC6H4 | 1 | 3af | 68 |
14 | Ph | 4⁃OMeC6H4 | 1 | 3ag | 63 |
15 | Ph | 3⁃NO2C6H4 | 1 | 3ah | 57 |
Entry | R | Ar | Time/h | Product | Isolated yield(%) |
16 | Ph | 3⁃CO2MeC6H4 | 1 | 3ai | 60 |
17 | Ph | 3⁃FC6H4 | 1 | 3aj | 73 |
18 | Ph | 3⁃ClC6H4 | 1 | 3ak | 70 |
19 | Ph | 2⁃CO2MeC6H4 | 1 | 3al | 82 |
20 | Ph | 2⁃MeC6H4 | 1 | 3am | 78 |
21 | Ph | 1⁃Naphthyl | 1 | 3an | 80 |
22 | Ph | 2⁃Naphthyl | 1 | 3ao | 63 |
23 | Ph | 3⁃Thienyl | 1 | 3ap | 64 |
24 | Ph | 2⁃Furan | 1 | 3aq | 46 |
25 | Ph | Cyclopentene 1⁃yl | 1 | 3ar | 55 |
26 | Ph | Cyclohexyl | 1 | 3as | 0 |
Entry | Oxidation(n/mmol) | Solvent | Temperature/℃ | Yield(%) |
---|---|---|---|---|
1 | Mn(acac)3(0.4) | MeCN | 80 | 52 |
2 | Cu(acac)2(0.4) | MeCN | 80 | 12 |
3 | Fe(acac)3(0.4) | MeCN | 80 | 9 |
4 | Fe(OAc)3(0.4) | MeCN | 80 | Trace |
5 | Mn(OAc)2 .4H2O(0.4) | MeCN | 80 | 18 |
6 | Mn(acac)3(0.4) | Toluene | 80 | 52 |
7 | Mn(acac)3(0.4) | DMF | 80 | 49 |
8 | Mn(acac)3(0.4) | THF | 80 | 40 |
9 | Mn(acac)3(0.4) | Dioxane | 80 | 33 |
10 | Mn(acac)3(0.4) | DMSO | 80 | 10 |
11 b | Mn(acac)3(0.4) | MeCN | 80 | 49 |
12 c | Mn(acac)3(0.4) | MeCN | 80 | 30 |
13 d | Mn(acac)3(0.4) | MeCN | 80 | 42 |
14 | Mn(acac)3(0.4) | MeCN | 60 | 70 |
15 | Mn(acac)3(0.4) | MeCN | 40 | 55 |
16 | Mn(acac)3(0.2) | MeCN | 60 | 55 |
17 | Mn(acac)3(0.1) | MeCN | 60 | 48 |
Table 2 Optimization of reaction conditions a
Entry | Oxidation(n/mmol) | Solvent | Temperature/℃ | Yield(%) |
---|---|---|---|---|
1 | Mn(acac)3(0.4) | MeCN | 80 | 52 |
2 | Cu(acac)2(0.4) | MeCN | 80 | 12 |
3 | Fe(acac)3(0.4) | MeCN | 80 | 9 |
4 | Fe(OAc)3(0.4) | MeCN | 80 | Trace |
5 | Mn(OAc)2 .4H2O(0.4) | MeCN | 80 | 18 |
6 | Mn(acac)3(0.4) | Toluene | 80 | 52 |
7 | Mn(acac)3(0.4) | DMF | 80 | 49 |
8 | Mn(acac)3(0.4) | THF | 80 | 40 |
9 | Mn(acac)3(0.4) | Dioxane | 80 | 33 |
10 | Mn(acac)3(0.4) | DMSO | 80 | 10 |
11 b | Mn(acac)3(0.4) | MeCN | 80 | 49 |
12 c | Mn(acac)3(0.4) | MeCN | 80 | 30 |
13 d | Mn(acac)3(0.4) | MeCN | 80 | 42 |
14 | Mn(acac)3(0.4) | MeCN | 60 | 70 |
15 | Mn(acac)3(0.4) | MeCN | 40 | 55 |
16 | Mn(acac)3(0.2) | MeCN | 60 | 55 |
17 | Mn(acac)3(0.1) | MeCN | 60 | 48 |
1 | Ni C. F., Hu M. Y., Hu J. B., Chem. Rev., 2015, 115(2), 765—825 |
2 | Zhou Y., Wang J., Gu Z. N., Wang S. N., Zhu W., Acena J. L., Soloshonok V. A., Izawa K., Liu H., Chem. Rev., 2016, 116(2), 422—518 |
3 | Liang T., Neumann C. N., Ritter T., Angew. Chem. Int. Ed., 2013, 52(32), 8214—8264 |
4 | Furuya T., Kamlet A. S., Ritter T., Nature, 2011, 473(7348), 470—477 |
5 | Tomashenko O. A., Grushin V. V., Chem. Rev., 2011, 111(8), 4475—4521 |
6 | Purser S., Moore P. R., Swallow S., Gouverneur V., Chem. Soc. Rev., 2008, 37(2), 320—330 |
7 | Müller K., Faeh C., Diederich F., Science, 2007, 317(5846), 1881—1886 |
8 | O’Hagan D., Chem. Soc. Rev., 2008, 37(2), 308—319 |
9 | Shimizu M., Hiyama T., Angew. Chem. Int. Ed., 2005, 44(2), 214—231 |
10 | Charpentier J., Früh N., Togni A., Chem. Rev., 2015, 115(2), 650—682 |
11 | Liu X., Xu C., Wang M., Liu Q., Chem. Rev., 2015, 115(2), 683—780 |
12 | Xu X. H., Matsuzaki K., Shibata N., Chem. Rev., 2015, 115(2), 731—764 |
13 | Yang X. Y., Wu T., Phipps R. J., Toste F. D., Chem. Rev., 2015, 115(2), 826—870 |
14 | Merino E., Nevado C., Chem. Soc. Rev., 2014, 43(18), 6598—6608 |
15 | Ge J. Y., Ding Q. P., Wang X. H., Peng Y. Y., J. Org. Chem., 2020, 85(12), 7658—7665 |
16 | Yang T. Y., Deng Z. B., Wang K. H., Li P. F., Huang D. F., Su Y. P., Hu Y. L., J. Org. Chem., 2020, 85(2), 924—933 |
17 | Cheung K. P. S., Tsui G. C., Org. Lett., 2017, 19(11), 2881—2884 |
18 | Ye Y. B., Cheung K. P. S., He L. S., Tsui G. C., Org. Lett., 2018, 20(6), 1676—1679 |
19 | Muzalevskiy V. M., Nenajdenko V. G., Org. Biomol. Chem., 2018, 16(42), 7935—7946 |
20 | Muzalevskiy V. M., Belyaeva K. V., Trofimov B. A., Nenajdenko V. G., Green Chem., 2019, 21(23), 6353—6360 |
21 | Jha B. K., Prudhviraj J., Mainkar P. S., Punna N., Chandrasekhar S., RSC Adv., 2020, 10(63), 38588—38591 |
22 | Zhu Y. Y., Li B. Y., Wang C., Dong Z. H, Zhong X. L., Wang K. R., Yan W. J., Wang R., Org. Biomol. Chem., 2017, 15(21), 4544—4547 |
23 | Shi H. S., Li S. H., Zhang F. G., Ma J. A., Chem. Commun., 2021, 57(100), 13744—13747 |
24 | Wu W., Han X. Y., Weng Z. Q., Org. Chem. Front., 2020, 7(21), 3499—3504 |
25 | Chu X. M., Wang C., Liu W., Liang L. L., Gong K. K., Zhao C. Y., Sun K.L., Eur. J. Med. Chem., 2019, 161, 101—117 |
26 | Ohnmacht C. J., Patel A. R., Lutz R. E., J. Med. Chem., 1971, 14(10), 926—928 |
27 | Mao J. L., Wan B. J., Wang Y. H., Franzblau S. G., Kozikowski A. P., ChemMedChem, 2007, 2(6), 811—813 |
28 | Lilienkampf A., Mao J. L., Wan B. J., Wang Y. H., Franzblau S. G., Kozikowski A. P., J.Med. Chem., 2009, 52(7), 2109—2118 |
29 | Dade J., Provot O., Moskowitz H., Mayrargue J., Prina E., Chem. Pharm. Bull., 2001, 49(4), 480—483 |
30 | Zhao X. B., David W. C. M., J. Am. Chem. Soc., 2020, 142(46), 19480—19486 |
31 | Nagase M., Kuninobu Y., Kanai M., J. Am. Chem. Soc., 2016, 138(19), 6103—6106 |
32 | Linderman R. J., Kirollos K. S., Tetrahedron Lett., 1990, 31(19), 2689—2692 |
33 | Bonacorso H. G., Andrighetto R., Zanatta N., Martins M. A. P., Tetrahedron Lett., 2010, 51(29), 3752—3755 |
34 | Bonacorso H. G., Rodrigues M. B., Feitosa S. C., Coelho H. S., Alves S. H., Keller J. T., Rosa W. C., Ketzer A., Frizzo C. P., Martins M. A. P., Zanatta N., J. Fluorine Chem., 2018, 205, 49—57 |
35 | Kappenberg Y. G., Ketzer A., Stefanello F. S., Salbego P. R. S., Acunha T. V., Abbadi B. L., Bizarro C. V., Basso L. A., Machado P., Martins M. A. P., Zanatta N., Iglesias B. A., Bonacorso C.V., New J. Chem., 2019, 43(31), 12375—12384 |
36 | Lefebvre O., Marull M., Schlosser M., Eur. J. Org. Chem., 2003, 2003(11), 2115—2121 |
37 | Cottet F., Marull M., Lefebvre O., Schlosser M., Eur. J. Org. Chem., 2003, 2003(8), 1559—1568 |
38 | Schneider T., Fleischmann M., Hergesell D., Majstorovic N., Maas G., Eur. J. Org. Chem., 2021, 2021(20), 2869—2886 |
39 | Wang Z. H., Shen L. W., Yang P., You Y., Zhao J. Q., Yuan W. C., J. Org. Chem., 2022, 87(9), 5804—5816 |
40 | Mitrofanov A. Y., Bychkova V. A., Nefedov S. E., Beletskaya I. P., J. Org. Chem., 2020, 85(22), 14507—14515 |
41 | Strekowski L., Hojjat M., Patterson S. E., Kiselyov A. S., J. Heterocycl. Chem., 1994, 31(6), 1413—1416 |
42 | Morimoto H., Tsubogo T., Litvinas N. D., Hartwig J. F., Angew. Chem. Int. Ed., 2011, 50(16), 3793—3798 |
43 | Gonda Z., Kovács S., Wéber C., Gáti T., Mészáros A., Kotschy A., Novák Z., Org. Lett., 2014, 16(16), 4268—4271 |
44 | Le C., Chen T. Q., Liang T., Zhang P., MacMillan D. W. C., Science, 2018, 360(6392), 1010—1014 |
45 | Zhang X. F., Zhu P.Y., Zhang R. H., Li X., Yao T. L., J. Org. Chem., 2020, 85(15), 9503—9513 |
46 | Yao T. L., Wang B., Ren B. G., Qin X. Y., Li T., Chem. Commun., 2021, 57(35), 4247—4250 |
47 | Yao T. L., Wang B., He D., Zhang X. F., Li X., Fang R., Org. Lett., 2020, 22(17), 6784—6789 |
48 | Mitamura T., Iwata K., Ogawa A., J. Org. Chem., 2011, 76(10), 3880—3887 |
49 | Zhang B., Studer A., Org. Lett., 2014, 16(4), 1216—1219 |
50 | Wang C. H., Li Y. H., Yang S. D., Org. Lett., 2018, 20(8), 2382—2385 |
51 | Liu Y., Li S. J., Chen X. L., Fan L. L., Li X. Y., Zhu S. S., Qu L. B., Yu B., Adv. Synth. Catal., 2020, 362(3), 688—694 |
52 | Parsaee F., Senarathna M. C., Kannangara P. B., Alexander S. N., Arche P. D. E., Welin E. R., Nat. Rev. Chem., 2021, 5(7), 486—499 |
53 | Punna N., Harada K., Zhou J., Shibata N., Org. Lett., 2019, 21(5), 1515—1520 |
54 | Li X. C., Wu J., Red Phosphorescent Organic Light⁃emittting Diode, CN 103694277A, 2014⁃04⁃02 |
李晓常, 吴江.一种红色磷光有机发光二极管, CN 103694277A, 2014⁃04⁃02 | |
55 | Malapit C. A., Bour J. R., Brigham C. E., Sanford M. S., Nature, 2018, 563(7729), 100—104 |
[1] | LI Aoqi, HU Chuanzhi, SHI Han, DENG Mingyu, XIAO Bo, JIANG Bo. Rapid Grafting of Phenylboronic Acid with Hydroxypropyl Chitosan Mediated by HATU [J]. Chem. J. Chinese Universities, 2023, 44(6): 20220698. |
[2] | LIN Junxu, XI Zhiwei, LI Zhiping, WANG Yingchun. Palladium Catalyzed Selective Synthesis of Pyrrolofuran Derivatives and Carbamates from Propargylic Alcohols and tert⁃Butyl Isonitrile [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220473. |
[3] | YAO Huiqin, HUANG Shan, SU Qiaoling, SHI Keren, GAN Qianqian, WANG Mingke. Loading of Myoglobin into Layer-by-layer Films Assembled Through Boronic Acid-diol Specific Recognition and Its Electrochemical Study† [J]. Chem. J. Chinese Universities, 2016, 37(5): 938. |
[4] | SUN Xiaocheng, YANG Hao, WANG Jianzu, MA Rujiang, AN Yingli, SHI Linqi. Dual-responsive Micelles Based on Boronicacid-modified Polymer† [J]. Chem. J. Chinese Universities, 2014, 35(7): 1570. |
[5] | DUAN Shu-Jing, HE Xi-Wen, CHEN Lang-Xing, ZHANG Yu-Kui. 4-Mercapto-phenylboronic Acid Functionalized Quartz Crystal Microbalances Sensor for the Determination of Sialic Acid [J]. Chem. J. Chinese Universities, 2012, 33(03): 464. |
[6] | LI Guang-Quan, YU Jing-Sheng, LI Guo-Wen*. Novel Fluorescent Vesicular Sensor for Saccharides Based on Boronic Acid\|diol Interaction [J]. Chem. J. Chinese Universities, 2011, 32(3): 793. |
[7] | WANG Hua-Fang1, HE Yun-Hua1, HE Xi-Wen1*, LI Wen-You1, CHEN Lang-Xing1, ZHANG Yu-Kui1,2*. Study of Bovine Serum Albumin Imprinted Polymer Fabricated with 3-Aminophenylboronic Acid as Functional Monomer on Chitosan Particles [J]. Chem. J. Chinese Universities, 2008, 29(4): 726. |
[8] | TANG Yu, WANG Zhen, LI Chao-Xing*. Preparation of a Novel Amphiphilic Copolymer Microspheres with Phenylborate Moieties and Its Glucose-sensitive Properties [J]. Chem. J. Chinese Universities, 2007, 28(8): 1581. |
[9] | CHEN Bao-Guo1,2, ZHANG Ming-Yu1*, ZHAO Yuan-Yuan1, SUN Chia-Chung1. Structural and Electronic Properties of 1,2-C2B10H12 Isonitrile Derivatives Used in Boron Neutron Capture Therapy [J]. Chem. J. Chinese Universities, 2007, 28(4): 760. |
[10] | LI Bo, TENG Da-Yong, WANG Zhen, LI Chao-Xing. Preparation of Poly(3-acrylamidophenylboronic Acid-co-N,N-dime-thylacrylamide-co-acrylamide)hydrogels and Investigations on Their Sugar-sensitive Properties [J]. Chem. J. Chinese Universities, 2007, 28(2): 376. |
[11] | ZHANG Jin-Li1, WU Yang-Jie1*, LI Jing-Ya1, DU Chen-Xia1, ZHENG Ju-Mei1, THOMAS C. W. Mak2, SONG Mao-Ping1. Synthesis of 3-Arylthiophenes with Luminescent Property via Suzuki Cross-coupling Reaction Catalyzed by Cyclopalladated Ferrocenylimine [J]. Chem. J. Chinese Universities, 2007, 28(12): 2311. |
[12] | GONG Jun-Fang; LIU Guang-Yu; ZHU Yu; DU Chen-Xia; SONG Mao-Ping; WU Yang-Jie*. Synthesis, Characterization and Catalytic Activity in Suzuki Reaction of Cyclopalladated Ferrocenylimine Triphenylphosphine Complexes [J]. Chem. J. Chinese Universities, 2006, 27(7): 1266. |
[13] | ZHANG Xian-Zhong, WANG Xue-Bin, WEN Hai-Tao . The Preparation and Biodistribution of a New Potential Myocardial Imaging Agent: Technetium-99m Labeled[Tc(CO)3(TBI)3]+ Complex [J]. Chem. J. Chinese Universities, 2003, 24(1): 21. |
[14] | LI Hong-Feng, WANG Xiang-Yun, YANG Qing-Chuan, LIU Yuan-Fang. Crystal and Molecular Structure of m-Aminophenyl Boronic Acid Hydrochloride [J]. Chem. J. Chinese Universities, 1995, 16(12): 1841. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||