Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (2): 20210563.doi: 10.7503/cjcu20210563
• Physical Chemistry • Previous Articles Next Articles
DENG Hongri1,2, CAO Xiaomei3, WANG Jingbo1,2(), LI Xiangyuan1,2
Received:
2021-08-10
Online:
2022-02-10
Published:
2021-11-23
Contact:
WANG Jingbo
E-mail:wangjingbo@scu.edu.cn
Supported by:
CLC Number:
TrendMD:
DENG Hongri, CAO Xiaomei, WANG Jingbo, LI Xiangyuan. Rate Rules for Hydrogen Abstraction Reactions of Polycyclic Aromatic Hydrocarbons and Unsaturated Radicals[J]. Chem. J. Chinese Universities, 2022, 43(2): 20210563.
Method | ΔE1/(kJ·mol-1) | ΔE-1/(kJ·mol-1) | ΔH298 K/(kJ·mol-1) |
---|---|---|---|
G4MP2 | 42.7 | 38.9 | 3.3 |
CBS?QB3 | 46.9 | 41.8 | 5.0 |
M06?2X/aug?cc?pVTZ | 41.4 | 38.5 | 2.9 |
M06?2X/cc?pVTZ | 41.4 | 37.2 | 4.2 |
Table 1 Comparison of forward and reverse energy barriers(ΔE1 and ΔE-1) at 0 K and reaction enthalpies (ΔH298 K) at 298 K calculated by different methods for the reaction of nC4H5 and naphthalene
Method | ΔE1/(kJ·mol-1) | ΔE-1/(kJ·mol-1) | ΔH298 K/(kJ·mol-1) |
---|---|---|---|
G4MP2 | 42.7 | 38.9 | 3.3 |
CBS?QB3 | 46.9 | 41.8 | 5.0 |
M06?2X/aug?cc?pVTZ | 41.4 | 38.5 | 2.9 |
M06?2X/cc?pVTZ | 41.4 | 37.2 | 4.2 |
Reaction | ΔE1/(kJ·mol-1) | ΔE-1/(kJ·mol-1) | ΔH298 K/(kJ·mol-1) |
---|---|---|---|
nC4H5+3cyc?Phen→C4H6+3cyc?Phen?α | 42.7 | 38.9 | 3.8 |
nC4H5+3cyc?Phen→C4H6+3cyc?Phen?β | 42.7 | 38.5 | 4.2 |
nC4H5+3cyc?Phen→C4H6+3cyc?Phen?γ | 44.4 | 40.6 | 3.8 |
nC4H5+3cyc?Phen→C4H6+3cyc?Phen?δ | 43.5 | 40.6 | 2.9 |
nC4H5+3cyc?Phen→C4H6+3cyc?Phen?ε | 43.5 | 47.7 | -4.6 |
iC4H5+3cyc?Phen→C4H6+3cyc?Phen?α | 44.8 | 27.2 | 18.0 |
iC4H5+3cyc?Phen→C4H6+3cyc?Phen?β | 45.2 | 26.8 | 18.0 |
iC4H5+3cyc?Phen→C4H6+3cyc?Phen?γ | 46.4 | 28.0 | 17.6 |
iC4H5+3cyc?Phen→C4H6+3cyc?Phen?δ | 46.0 | 28.9 | 16.3 |
iC4H5+3cyc?Phen→C4H6+3cyc?Phen?ε | 45.2 | 35.1 | 9.2 |
C6H5+3cyc?Phen→C6H6+3cyc?Phen?α | 37.7 | 36.4 | 2.1 |
C6H5+3cyc?Phen→C6H6+3cyc?Phen?β | 38.5 | 36.4 | 2.5 |
C6H5+3cyc?Phen→C6H6+3cyc?Phen?γ | 38.1 | 36.0 | 2.1 |
C6H5+3cyc?Phen→C6H6+3cyc?Phen?δ | 38.1 | 37.2 | 1.3 |
C6H5+3cyc?Phen→C6H6+3cyc?Phen?ε | 38.9 | 45.2 | -6.3 |
Table 2 Theoretical predicted forward and reverse barriers and reaction enthalpies for hydrogen abstraction from phenanthrene by nC4H5, iC4H5 and C6H5 radicals
Reaction | ΔE1/(kJ·mol-1) | ΔE-1/(kJ·mol-1) | ΔH298 K/(kJ·mol-1) |
---|---|---|---|
nC4H5+3cyc?Phen→C4H6+3cyc?Phen?α | 42.7 | 38.9 | 3.8 |
nC4H5+3cyc?Phen→C4H6+3cyc?Phen?β | 42.7 | 38.5 | 4.2 |
nC4H5+3cyc?Phen→C4H6+3cyc?Phen?γ | 44.4 | 40.6 | 3.8 |
nC4H5+3cyc?Phen→C4H6+3cyc?Phen?δ | 43.5 | 40.6 | 2.9 |
nC4H5+3cyc?Phen→C4H6+3cyc?Phen?ε | 43.5 | 47.7 | -4.6 |
iC4H5+3cyc?Phen→C4H6+3cyc?Phen?α | 44.8 | 27.2 | 18.0 |
iC4H5+3cyc?Phen→C4H6+3cyc?Phen?β | 45.2 | 26.8 | 18.0 |
iC4H5+3cyc?Phen→C4H6+3cyc?Phen?γ | 46.4 | 28.0 | 17.6 |
iC4H5+3cyc?Phen→C4H6+3cyc?Phen?δ | 46.0 | 28.9 | 16.3 |
iC4H5+3cyc?Phen→C4H6+3cyc?Phen?ε | 45.2 | 35.1 | 9.2 |
C6H5+3cyc?Phen→C6H6+3cyc?Phen?α | 37.7 | 36.4 | 2.1 |
C6H5+3cyc?Phen→C6H6+3cyc?Phen?β | 38.5 | 36.4 | 2.5 |
C6H5+3cyc?Phen→C6H6+3cyc?Phen?γ | 38.1 | 36.0 | 2.1 |
C6H5+3cyc?Phen→C6H6+3cyc?Phen?δ | 38.1 | 37.2 | 1.3 |
C6H5+3cyc?Phen→C6H6+3cyc?Phen?ε | 38.9 | 45.2 | -6.3 |
Reaction class | Radical | Number of aromatic rings | No. | Reaction | ΔE1/(kJ·mol-1) | ΔE-1/(kJ·mol-1) | ΔH298 K/(kJ·mol-1) |
---|---|---|---|---|---|---|---|
C5 class | C3H3 | 3cyc | R1 | 3cyc?Acen→3cyc?Acen?α | 113.8 | 13.0 | 101.3 |
C3H5 | 3cyc | R2 | 3cyc?Acen→3cyc?Acen?α | 128.4 | 12.6 | 117.2 | |
C5H5 | 3cyc | R3 | 3cyc?Acen→3cyc?Acen?α | 145.2 | 5.0 | 140.6 | |
nC4H5 | 3cyc | R4 | 3cyc?Acen→3cyc?Acen?α | 51.0 | 31.8 | 19.2 | |
4cyc | R5 | 4cyc?Acep→4cyc?Acep?α | 51.0 | 32.2 | 18.4 | ||
5cyc | R6 | 5cyc?Cycpy→5cyc?Cycpy?α | 50.2 | 32.6 | 17.2 | ||
6cyc | R7 | 6cyc?Dicpy→6cyc?Dicpy?γ | 50.2 | 33.1 | 17.2 | ||
iC4H5 | 3cyc | R8 | 3cyc?Acen→3cyc?Acen?α | 56.5 | 23.4 | 32.6 | |
4cyc | R9 | 4cyc?Acep→4cyc?Acep?α | 55.6 | 23.0 | 32.2 | ||
5cyc | R10 | 5cyc?Cycpy→5cyc?Cycpy?α | 54.4 | 23.4 | 31.0 | ||
6cyc | R11 | 6cyc?Dicpy→6cyc?Dicpy?γ | 55.6 | 23.4 | 31.0 | ||
C6H5 | 3cyc | R12 | 3cyc?Acen→3cyc?Acen?α | 47.3 | 30.5 | 17.6 | |
4cyc | R13 | 4cyc?Acep→4cyc?Acep?α | 47.3 | 31.4 | 16.7 | ||
5cyc | R14 | 5cyc?Cycpy→5cyc?Cycpy?α | 46.4 | 31.8 | 15.5 | ||
6cyc | R15 | 6cyc?Dicpy→6cyc?Dicpy?γ | 46.4 | 30.5 | 15.5 | ||
C6 class | C3H3 | 2cyc | R16 | 2cyc?Naph→2cyc?Naph?α | 104.2 | 18.4 | 86.2 |
C3H5 | 2cyc | R17 | 2cyc?Naph→2cyc?Naph?α | 120.1 | 19.2 | 102.5 | |
C5H5 | 2cyc | R18 | 2cyc?Naph→2cyc?Naph?α | 131.4 | 6.3 | 125.5 | |
nC4H5 | 2cyc | R19 | 2cyc?Naph→2cyc?Naph?α | 41.4 | 37.2 | 4.2 | |
3cyc | R20 | 3cyc?Anth→3cyc?Anth?β | 42.3 | 38.1 | 4.2 | ||
4cyc | R21 | 4cyc?Tetce→4cyc?Tetce?β | 41.0 | 38.1 | 4.6 | ||
3cyc | R22 | 3cyc?Phen→3cyc?Phen?α | 42.7 | 38.9 | 3.8 | ||
3cyc | R23 | 3cyc?Acen→3cyc?Acen?β | 42.3 | 39.7 | 2.5 | ||
4cyc | R24 | 4cyc?Pyre→4cyc?Pyre?α | 41.8 | 38.5 | 2.5 | ||
4cyc | R25 | 4cyc?Tetph→4cyc?Tetph?α | 41.8 | 45.6 | -3.8 | ||
4cyc | R26 | 4cyc?Acep→4cyc?Acep?δ | 41.8 | 38.5 | 3.3 | ||
5cyc | R27 | 5cyc?Cycpy→5cyc?Cycpy?δ | 41.0 | 38.1 | 4.2 | ||
6cyc | R28 | 6cyc?Dicpy→6cyc?Dicpy?β | 41.4 | 39.7 | 1.7 | ||
iC4H5 | 2cyc | R29 | 2cyc?Naph→2cyc?Naph?α | 44.4 | 26.4 | 18.0 | |
3cyc | R30 | 3cyc?Anth→3cyc?Anth?β | 43.9 | 25.9 | 18.0 | ||
4cyc | R31 | 4cyc?Tetce→4cyc?Tetce?β | 45.6 | 28.0 | 18.0 | ||
3cyc | R32 | 3cyc?Phen→3cyc?Phen?α | 45.6 | 27.6 | 17.6 | ||
3cyc | R33 | 3cyc?Acen→3cyc?Acen?β | 46.9 | 30.1 | 15.9 | ||
4cyc | R34 | 4cyc?Pyre→4cyc?Pyre?α | 45.2 | 27.6 | 15.9 | ||
4cyc | R35 | 4cyc?Tetph→4cyc?Tetph?α | 43.9 | 33.5 | 9.6 | ||
4cyc | R36 | 4cyc?Acep→4cyc?Acep?δ | 45.2 | 27.2 | 17.2 | ||
5cyc | R37 | 5cyc?Cycpy→5cyc?Cycpy?δ | 44.4 | 27.2 | 17.6 | ||
6cyc | R38 | 6cyc?Dicpy→6cyc?Dicpy?β | 45.2 | 29.3 | 15.1 | ||
C6H5 | 2cyc | R39 | 2cyc?Naph→2cyc?Naph?α | 38.1 | 36.4 | 2.5 | |
3cyc | R40 | 3cyc?Anth→3cyc?Anth?β | 38.5 | 36.8 | 2.5 | ||
4cyc | R41 | 4cyc?Tetce→4cyc?Tetce?β | 38.9 | 37.7 | 2.9 | ||
3cyc | R42 | 3cyc?Phen→3cyc?Phen?α | 37.7 | 36.4 | 2.1 | ||
3cyc | R43 | 3cyc?Acen→3cyc?Acen?β | 39.3 | 38.5 | 0.8 | ||
4cyc | R44 | 4cyc?Pyre→4cyc?Pyre?α | 37.7 | 36.4 | 0.8 | ||
4cyc | R45 | 4cyc?Tetph→4cyc?Tetph?α | 37.2 | 43.1 | -5.4 | ||
4cyc | R46 | 4cyc?Acep→4cyc?Acep?δ | 37.7 | 36.0 | 1.7 | ||
5cyc | R47 | 5cyc?Cycpy→5cyc?Cycpy?δ | 36.4 | 35.1 | 2.5 | ||
6cyc | R48 | 6cyc?Dicpy→6cyc?Dicpy?β | 37.7 | 37.7 | 0 |
Table 3 Theoretical predicted forward and reverse barriers and reaction enthalpies for hydrogen abstraction from PAHs by C3H3, C3H5, nC4H5, iC4H5, C5H5, and C6H5 radicals calculated by M06-2X/cc-pVTZ method*
Reaction class | Radical | Number of aromatic rings | No. | Reaction | ΔE1/(kJ·mol-1) | ΔE-1/(kJ·mol-1) | ΔH298 K/(kJ·mol-1) |
---|---|---|---|---|---|---|---|
C5 class | C3H3 | 3cyc | R1 | 3cyc?Acen→3cyc?Acen?α | 113.8 | 13.0 | 101.3 |
C3H5 | 3cyc | R2 | 3cyc?Acen→3cyc?Acen?α | 128.4 | 12.6 | 117.2 | |
C5H5 | 3cyc | R3 | 3cyc?Acen→3cyc?Acen?α | 145.2 | 5.0 | 140.6 | |
nC4H5 | 3cyc | R4 | 3cyc?Acen→3cyc?Acen?α | 51.0 | 31.8 | 19.2 | |
4cyc | R5 | 4cyc?Acep→4cyc?Acep?α | 51.0 | 32.2 | 18.4 | ||
5cyc | R6 | 5cyc?Cycpy→5cyc?Cycpy?α | 50.2 | 32.6 | 17.2 | ||
6cyc | R7 | 6cyc?Dicpy→6cyc?Dicpy?γ | 50.2 | 33.1 | 17.2 | ||
iC4H5 | 3cyc | R8 | 3cyc?Acen→3cyc?Acen?α | 56.5 | 23.4 | 32.6 | |
4cyc | R9 | 4cyc?Acep→4cyc?Acep?α | 55.6 | 23.0 | 32.2 | ||
5cyc | R10 | 5cyc?Cycpy→5cyc?Cycpy?α | 54.4 | 23.4 | 31.0 | ||
6cyc | R11 | 6cyc?Dicpy→6cyc?Dicpy?γ | 55.6 | 23.4 | 31.0 | ||
C6H5 | 3cyc | R12 | 3cyc?Acen→3cyc?Acen?α | 47.3 | 30.5 | 17.6 | |
4cyc | R13 | 4cyc?Acep→4cyc?Acep?α | 47.3 | 31.4 | 16.7 | ||
5cyc | R14 | 5cyc?Cycpy→5cyc?Cycpy?α | 46.4 | 31.8 | 15.5 | ||
6cyc | R15 | 6cyc?Dicpy→6cyc?Dicpy?γ | 46.4 | 30.5 | 15.5 | ||
C6 class | C3H3 | 2cyc | R16 | 2cyc?Naph→2cyc?Naph?α | 104.2 | 18.4 | 86.2 |
C3H5 | 2cyc | R17 | 2cyc?Naph→2cyc?Naph?α | 120.1 | 19.2 | 102.5 | |
C5H5 | 2cyc | R18 | 2cyc?Naph→2cyc?Naph?α | 131.4 | 6.3 | 125.5 | |
nC4H5 | 2cyc | R19 | 2cyc?Naph→2cyc?Naph?α | 41.4 | 37.2 | 4.2 | |
3cyc | R20 | 3cyc?Anth→3cyc?Anth?β | 42.3 | 38.1 | 4.2 | ||
4cyc | R21 | 4cyc?Tetce→4cyc?Tetce?β | 41.0 | 38.1 | 4.6 | ||
3cyc | R22 | 3cyc?Phen→3cyc?Phen?α | 42.7 | 38.9 | 3.8 | ||
3cyc | R23 | 3cyc?Acen→3cyc?Acen?β | 42.3 | 39.7 | 2.5 | ||
4cyc | R24 | 4cyc?Pyre→4cyc?Pyre?α | 41.8 | 38.5 | 2.5 | ||
4cyc | R25 | 4cyc?Tetph→4cyc?Tetph?α | 41.8 | 45.6 | -3.8 | ||
4cyc | R26 | 4cyc?Acep→4cyc?Acep?δ | 41.8 | 38.5 | 3.3 | ||
5cyc | R27 | 5cyc?Cycpy→5cyc?Cycpy?δ | 41.0 | 38.1 | 4.2 | ||
6cyc | R28 | 6cyc?Dicpy→6cyc?Dicpy?β | 41.4 | 39.7 | 1.7 | ||
iC4H5 | 2cyc | R29 | 2cyc?Naph→2cyc?Naph?α | 44.4 | 26.4 | 18.0 | |
3cyc | R30 | 3cyc?Anth→3cyc?Anth?β | 43.9 | 25.9 | 18.0 | ||
4cyc | R31 | 4cyc?Tetce→4cyc?Tetce?β | 45.6 | 28.0 | 18.0 | ||
3cyc | R32 | 3cyc?Phen→3cyc?Phen?α | 45.6 | 27.6 | 17.6 | ||
3cyc | R33 | 3cyc?Acen→3cyc?Acen?β | 46.9 | 30.1 | 15.9 | ||
4cyc | R34 | 4cyc?Pyre→4cyc?Pyre?α | 45.2 | 27.6 | 15.9 | ||
4cyc | R35 | 4cyc?Tetph→4cyc?Tetph?α | 43.9 | 33.5 | 9.6 | ||
4cyc | R36 | 4cyc?Acep→4cyc?Acep?δ | 45.2 | 27.2 | 17.2 | ||
5cyc | R37 | 5cyc?Cycpy→5cyc?Cycpy?δ | 44.4 | 27.2 | 17.6 | ||
6cyc | R38 | 6cyc?Dicpy→6cyc?Dicpy?β | 45.2 | 29.3 | 15.1 | ||
C6H5 | 2cyc | R39 | 2cyc?Naph→2cyc?Naph?α | 38.1 | 36.4 | 2.5 | |
3cyc | R40 | 3cyc?Anth→3cyc?Anth?β | 38.5 | 36.8 | 2.5 | ||
4cyc | R41 | 4cyc?Tetce→4cyc?Tetce?β | 38.9 | 37.7 | 2.9 | ||
3cyc | R42 | 3cyc?Phen→3cyc?Phen?α | 37.7 | 36.4 | 2.1 | ||
3cyc | R43 | 3cyc?Acen→3cyc?Acen?β | 39.3 | 38.5 | 0.8 | ||
4cyc | R44 | 4cyc?Pyre→4cyc?Pyre?α | 37.7 | 36.4 | 0.8 | ||
4cyc | R45 | 4cyc?Tetph→4cyc?Tetph?α | 37.2 | 43.1 | -5.4 | ||
4cyc | R46 | 4cyc?Acep→4cyc?Acep?δ | 37.7 | 36.0 | 1.7 | ||
5cyc | R47 | 5cyc?Cycpy→5cyc?Cycpy?δ | 36.4 | 35.1 | 2.5 | ||
6cyc | R48 | 6cyc?Dicpy→6cyc?Dicpy?β | 37.7 | 37.7 | 0 |
Reaction class | nC4H5 | iC4H5 | C6H5 | |||
---|---|---|---|---|---|---|
AEB | MAD | AEB | MAD | AEB | MAD | |
C5 class | 50.6 | 0.8a | 55.6 | 2.1 | 46.9 | 0.8a |
C6 class | 41.8 | 1.7a | 45.2 | 2.9a | 38.1 | 2.9a |
Difference between C5 and C6 classes | 8.8 | 10.0b | 10.5 | 12.6b | 8.8 | 10.9b |
Table 4 Summary of energy barriers(ΔE1, kJ/mol) belonging to different reaction classes
Reaction class | nC4H5 | iC4H5 | C6H5 | |||
---|---|---|---|---|---|---|
AEB | MAD | AEB | MAD | AEB | MAD | |
C5 class | 50.6 | 0.8a | 55.6 | 2.1 | 46.9 | 0.8a |
C6 class | 41.8 | 1.7a | 45.2 | 2.9a | 38.1 | 2.9a |
Difference between C5 and C6 classes | 8.8 | 10.0b | 10.5 | 12.6b | 8.8 | 10.9b |
Radical | Reaction | Reactant | 500 K | 1000 K | 2500 K | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
krule/ (cm3·mol-1·s-1) | kTST/ (cm3·mol-1·s-1) | f | u | krule/ (cm3·mol-1·s-1) | kTST/ (cm3·mol-1·s-1) | f | u | krule/ (cm3·mol-1·s-1) | kTST/ (cm3·mol-1·s-1) | f | u | |||
nC4H5 | R19 | 2cyc?Naph | 2.31×106 | 1.39×106 | 0.6 | 1.81 | 1.62×109 | 9.47×108 | 0.58 | 1.76 | 5.64×1011 | 3.23×1011 | 0.57 | 1.73 |
R20 | 3cyc?Anth | 2.31×106 | 1.73×106 | 0.75 | 1.62×109 | 1.27×109 | 0.78 | 5.64×1011 | 4.46×1011 | 0.79 | ||||
R21 | 4cyc?Tetce | 2.31×106 | 2.51×106 | 1.09 | 1.62×109 | 1.67×109 | 1.03 | 5.64×1011 | 5.58×1011 | 0.99 | ||||
iC4H5 | R29 | 2cyc?Naph | 2.76×105 | 3.26×105 | 1.18 | 3.50 | 2.62×108 | 3.03×108 | 1.16 | 3.05 | 1.08×1011 | 1.24×1011 | 1.14 | 2.87 |
R30 | 3cyc?Anth | 2.76×105 | 6.44×105 | 2.34 | 2.62×108 | 5.59×108 | 2.14 | 1.08×1011 | 2.19×1011 | 2.02 | ||||
R31 | 4cyc?Tetce | 2.76×105 | 1.84×105 | 0.67 | 2.62×108 | 1.83×108 | 0.70 | 1.08×1011 | 7.62×1010 | 0.70 | ||||
C6H5 | R39 | 2cyc?Naph | 5.88×106 | 2.91×106 | 0.5 | 2.04 | 3.24×109 | 1.62×109 | 0.5 | 1.98 | 1.00×1012 | 4.94×1011 | 0.49 | 1.97 |
R40 | 3cyc?Anth | 5.88×106 | 4.64×106 | 0.79 | 3.24×109 | 2.61×109 | 0.8 | 1.00×1012 | 7.88×1011 | 0.79 | ||||
R41 | 4cyc?Tetce | 5.88×106 | 2.27×106 | 0.39 | 3.24×109 | 1.32×109 | 0.41 | 1.00×1012 | 4.01×1011 | 0.4 |
Table 5 Effect of the size of PAHs on the rate constants of C6 reaction class
Radical | Reaction | Reactant | 500 K | 1000 K | 2500 K | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
krule/ (cm3·mol-1·s-1) | kTST/ (cm3·mol-1·s-1) | f | u | krule/ (cm3·mol-1·s-1) | kTST/ (cm3·mol-1·s-1) | f | u | krule/ (cm3·mol-1·s-1) | kTST/ (cm3·mol-1·s-1) | f | u | |||
nC4H5 | R19 | 2cyc?Naph | 2.31×106 | 1.39×106 | 0.6 | 1.81 | 1.62×109 | 9.47×108 | 0.58 | 1.76 | 5.64×1011 | 3.23×1011 | 0.57 | 1.73 |
R20 | 3cyc?Anth | 2.31×106 | 1.73×106 | 0.75 | 1.62×109 | 1.27×109 | 0.78 | 5.64×1011 | 4.46×1011 | 0.79 | ||||
R21 | 4cyc?Tetce | 2.31×106 | 2.51×106 | 1.09 | 1.62×109 | 1.67×109 | 1.03 | 5.64×1011 | 5.58×1011 | 0.99 | ||||
iC4H5 | R29 | 2cyc?Naph | 2.76×105 | 3.26×105 | 1.18 | 3.50 | 2.62×108 | 3.03×108 | 1.16 | 3.05 | 1.08×1011 | 1.24×1011 | 1.14 | 2.87 |
R30 | 3cyc?Anth | 2.76×105 | 6.44×105 | 2.34 | 2.62×108 | 5.59×108 | 2.14 | 1.08×1011 | 2.19×1011 | 2.02 | ||||
R31 | 4cyc?Tetce | 2.76×105 | 1.84×105 | 0.67 | 2.62×108 | 1.83×108 | 0.70 | 1.08×1011 | 7.62×1010 | 0.70 | ||||
C6H5 | R39 | 2cyc?Naph | 5.88×106 | 2.91×106 | 0.5 | 2.04 | 3.24×109 | 1.62×109 | 0.5 | 1.98 | 1.00×1012 | 4.94×1011 | 0.49 | 1.97 |
R40 | 3cyc?Anth | 5.88×106 | 4.64×106 | 0.79 | 3.24×109 | 2.61×109 | 0.8 | 1.00×1012 | 7.88×1011 | 0.79 | ||||
R41 | 4cyc?Tetce | 5.88×106 | 2.27×106 | 0.39 | 3.24×109 | 1.32×109 | 0.41 | 1.00×1012 | 4.01×1011 | 0.4 |
Radical | Reaction | Structure | 500 K | 1000 K | 2500 K | |||
---|---|---|---|---|---|---|---|---|
kTST/ (cm3·mol-1·s-1) | u | kTST/ (cm3·mol-1·s-1) | u | kTST/ (cm3·mol-1·s-1) | u | |||
nC4H5 | R4 | C5 | 2.07×105 | 19.18 | 4.11×108 | 7.10 | 2.66×1011 | 3.95 |
R6 | C5 | 2.82×105 | 5.20×108 | 3.23×1011 | ||||
R23 | C6 | 3.97×106 | 2.92×109 | 1.05×1012 | ||||
R27 | C6 | 9.42×105 | 6.10×108 | 2.01×1011 | ||||
iC4H5 | R8 | C5 | 3.34×104 | 9.81 | 1.17×108 | 4.04 | 1.06×1011 | 2.35 |
R10 | C5 | 3.14×104 | 8.87×107 | 7.14×1010 | ||||
R33 | C6 | 3.08×105 | 3.58×108 | 1.68×1011 | ||||
R37 | C6 | 2.40×105 | 2.15×108 | 8.63×1010 | ||||
C6H5 | R12 | C5 | 6.43×105 | 18.40 | 1.08×109 | 7.72 | 6.45×1011 | 4.63 |
R14 | C5 | 5.76×105 | 8.56×108 | 4.77×1011 | ||||
R43 | C6 | 1.06×107 | 6.61×109 | 2.21×1012 | ||||
R47 | C6 | 7.87×106 | 4.24×109 | 1.30×1012 |
Table 6 Effect of the structure(five- or six-membered ring) on the rate constants
Radical | Reaction | Structure | 500 K | 1000 K | 2500 K | |||
---|---|---|---|---|---|---|---|---|
kTST/ (cm3·mol-1·s-1) | u | kTST/ (cm3·mol-1·s-1) | u | kTST/ (cm3·mol-1·s-1) | u | |||
nC4H5 | R4 | C5 | 2.07×105 | 19.18 | 4.11×108 | 7.10 | 2.66×1011 | 3.95 |
R6 | C5 | 2.82×105 | 5.20×108 | 3.23×1011 | ||||
R23 | C6 | 3.97×106 | 2.92×109 | 1.05×1012 | ||||
R27 | C6 | 9.42×105 | 6.10×108 | 2.01×1011 | ||||
iC4H5 | R8 | C5 | 3.34×104 | 9.81 | 1.17×108 | 4.04 | 1.06×1011 | 2.35 |
R10 | C5 | 3.14×104 | 8.87×107 | 7.14×1010 | ||||
R33 | C6 | 3.08×105 | 3.58×108 | 1.68×1011 | ||||
R37 | C6 | 2.40×105 | 2.15×108 | 8.63×1010 | ||||
C6H5 | R12 | C5 | 6.43×105 | 18.40 | 1.08×109 | 7.72 | 6.45×1011 | 4.63 |
R14 | C5 | 5.76×105 | 8.56×108 | 4.77×1011 | ||||
R43 | C6 | 1.06×107 | 6.61×109 | 2.21×1012 | ||||
R47 | C6 | 7.87×106 | 4.24×109 | 1.30×1012 |
Hydrogen atom type | PAHS | u | |||||
---|---|---|---|---|---|---|---|
A/(cm3·mol-1·s-1) | n | Ea/(kJ·mol-1) | 500 K | 1000 K | 2500 K | ||
nC4H5 | C5 class | 0.456 | 3.80 | 40.71 | 2.94 | 2.77 | 2.73 |
C6 class | 0.588 | 3.73 | 32.43 | 5.10 | 4.97 | 5.22 | |
iC4H5 | C5 class | 0.111 | 3.81 | 45.52 | 1.43 | 1.64 | 1.78 |
C6 class | 0.118 | 3.74 | 34.73 | 4.32 | 5.09 | 5.64 | |
C6H5 | C5 class | 0.914 | 3.76 | 39.12 | 2.98 | 3.40 | 3.70 |
C6 class | 0.558 | 3.79 | 29.83 | 5.23 | 5.03 | 5.51 |
Table 7 Rate rules for H-abstraction reaction of PAHs by nC4H5, iC4H5, C5H5, and C6H5 radical
Hydrogen atom type | PAHS | u | |||||
---|---|---|---|---|---|---|---|
A/(cm3·mol-1·s-1) | n | Ea/(kJ·mol-1) | 500 K | 1000 K | 2500 K | ||
nC4H5 | C5 class | 0.456 | 3.80 | 40.71 | 2.94 | 2.77 | 2.73 |
C6 class | 0.588 | 3.73 | 32.43 | 5.10 | 4.97 | 5.22 | |
iC4H5 | C5 class | 0.111 | 3.81 | 45.52 | 1.43 | 1.64 | 1.78 |
C6 class | 0.118 | 3.74 | 34.73 | 4.32 | 5.09 | 5.64 | |
C6H5 | C5 class | 0.914 | 3.76 | 39.12 | 2.98 | 3.40 | 3.70 |
C6 class | 0.558 | 3.79 | 29.83 | 5.23 | 5.03 | 5.51 |
1 | Glassman I., Yetter R. A., Glumac N. G., Combustion, Academic, San Diego, CA, 2015 |
2 | Violi A., D’Anna A., D’Alessio A., Chem. Eng. Sci., 1999, 54(15/16), 3433—3442 |
3 | Raj A., da Silva G. R., Chung S. H., Combust. Flame, 2012, 159(11), 3423—3436 |
4 | Richter H., Howard J. B., Prog. Energy Combust. Sci., 2000, 26(4), 565—608 |
5 | Kuwana K., Li T., Saito K., Chem. Eng. Sci., 2006, 61, 6718—6726 |
6 | Saha B., Irle S., Morokuma K., J. Chem. Phys., 2010, 132(22), 224303 |
7 | Frenklach M., Wang H., Symp. Int. Combust., 1991, 23(1),1559—1566 |
8 | Johansson K. O., Gabaly F. E. I., Schrader P. E., Campbell M. F., Michelsen H. A., Aerosol. Sci. Tech. Science, 2017, 51(12), 1333—1344 |
9 | Frenklach M., Phys. Chem. Chem. Phys., 2002, 4(11), 2028—2037 |
10 | Semenikhin A. S., Savchenkova A. S., Chechet I. V., Matveev S. G., Liu Z., Frenklach M., Mebel A. M., Phys. Chem. Chem. Phys., 2017, 19(37), 25401—25413 |
11 | Mai T. V. T., Ratkiewicz A., Le A., Duong M., Truong T. N., Huynh L. K., Phys. Chem. Chem. Phys., 2018, 20, 23578—23592 |
12 | Baradyn M., Ratkiewicz A., J. Phys. Chem. A, 2019, 123(4), 750—763 |
13 | Hou D. Y., You X. Q., Phys. Chem. Chem. Phys., 2017, 19(45), 30772—30780 |
14 | Frenklach M., Liu Z., Singh R. I., Galimova G. R., Azyazov V. N., Mebel A. M., Combust. Flame, 2018, 188, 284—306 |
15 | Battin⁃Leclerc F., Curran H., Faravelli T., Glaude P. A., Cleaner Combustion, 2013, 93—109 |
16 | Tokmakov I. V., Lin M. C., J. Phys. Chem. A, 2004, 108(45), 9697—9714 |
17 | Bensabath T., Monnier H., Glaude P. A., J. Anal. Appl. Pyrol., 2016, 122, 342—354 |
18 | Norinaga K., Deutschmann O., Saegusa N., Hayashi J. I., J. Anal. Appl. Pyrol., 2009, 86, 148—160 |
19 | Buras Z. J., Chu T. C., Jamal A., Yee N. W., Middaugh J. E., Green W. H., Phys. Chem. Chem. Phys., 2018, 20(19), 13191—13214 |
20 | Whitesides R., Frenklach M., J. Phys. Chem. A, 2010, 114(2), 689—703 |
21 | Whitesides R., Frenklach M., Z. Phys. Chem., 2015, 229(4), 597—614 |
22 | Cao X. M., Li Z. R., Wang J. B., Li X. Y., Theor. Chem. Acc., 2020, 6(139), 94 |
23 | Colket M., Edwards T., Williams S., Cernansky N. P., Miller D. L., Egolfopoulos F., Lindstedt P., Seshadri K., Dryer F. L., Law C. K., Friend D., Lenhert D. B., Pitsch H., Sarofim A., Smooke M., Tsang W., AIAA J., 2007, 770 |
24 | Frenklach M., Clary D. W., Gardiner W. C., Stein S. E., Symp. Int. Combust., 1985, 20(1), 887—901 |
25 | Miller J. A., Klippenstein S. J., Robertson S. H., J. Phys. Chem., 2000, 104(32), 7525—7536 |
26 | Striebel F., Jusinski L. E., Fahr A., Halpern J., Klippenstein S., Taatjes C. A., Phys. Chem. Chem. Phys., 2004, 6(9), 2216—2223 |
27 | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr, Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision A. 1, Gaussian Inc., Wallingford CT, 2009 |
28 | Zhao Y., Truhlar D. G., Theor. Chem. Acc., 2008, 120, 215—241 |
29 | Zhao Y., Truhlar D. G., Acc. Chem. Res., 2008, 41(2), 157—167 |
30 | Hemelsoet K., Speybroeck V. V., Waroquier M., Chem. Phys. Chem., 2008, 9(16), 2349—2358 |
31 | Kashinski D. O., Chase G. M., Nelson R. G., Nallo O. E. D., Scales A. N., VanderLey D. L., Byrd E. F. C., J. Phys. Chem. A, 2017, 121(11), 2265—2273 |
32 | Gonzalez C., Schlegel H. B., J. Phys. Chem., 1990, 94(14), 5523—5527 |
33 | Canneaux S., Bohr F., Henon E., J. Comput. Chem., 2014, 35(1), 82—93 |
34 | Pollak E., Pechukas P., J. Am. Chem. Soc., 1978, 100(10), 2984—2991 |
35 | Ayala P. Y., Schlegel H. B., J. Chem. Phys., 1998, 108(6), 2314—2325 |
36 | Mammen M., Shakhnovich E. I., Whitesides G. M., J. Org. Chem., 1998, 63(10), 3168—3175 |
37 | Sirjean B., Dames E., Wang H., Tsang W., J. Phys. Chem. A, 2012, 116(1), 319—332 |
38 | Eckart C., Phys. Rev., 1930, 35(11), 1303—1309 |
39 | Johnston H. S., Heicklen J., J. Phys. Chem., 1962, 66(3), 532—533 |
40 | Raj A., Al Rashidi M. J., Chung S. H., Sarathy S. M., J. Phys. Chem. A, 2014, 118(16), 2865—2885 |
41 | Hemelsoet K., Van Speybroeck V., Moran D., Marin GB., Radom L., Waroquier M., J. Phys. Chem. A, 2006, 110(50), 13624—13631 |
42 | Yao Q., Sun X. H., Li Z. R., Chen F. F., Li X. Y., J. Phys. Chem. A, 2017, 121(16), 3001—3018 |
43 | Sun X. H., Zong W. G., Wang J. B., Li Z. R., Li X. Y., Phys. Chem. Chem. Phys., 2019,21(20), 10693—10705 |
44 | Sun X. H., Zong W. G., Li Z. R., Li X. Y., Energy Fuels, 2019, 33(6), 5597—5609 |
45 | Villano S M., Huynh L K., Carstensen H., Dean A M., J. Phys. Chem. A, 2012, 116(21), 5068—5089 |
46 | Villano S M., Huynh L K., Carstensen H., Dean A M., J. Phys. Chem. A, 2011, 115(46), 13425—13442 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||