Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (5): 1480.doi: 10.7503/cjcu20200678
• Review • Previous Articles Next Articles
LI Tong1, GU Sichen1, LIN Qiaowei1, HAN Junwei1, ZHOU Guangmin1,2(), LI Baohua1, KANG Feiyu1, LYU Wei1(
)
Received:
2020-09-14
Online:
2021-05-10
Published:
2020-12-07
Contact:
ZHOU Guangmin,LYU Wei
E-mail:guangminzhou@sz.tsinghua.edu.cn;lv.wei@sz.tsinghua.edu.cn
Supported by:
CLC Number:
TrendMD:
LI Tong, GU Sichen, LIN Qiaowei, HAN Junwei, ZHOU Guangmin, LI Baohua, KANG Feiyu, LYU Wei. Advanced 3D Current Collectors for Dendrite-free Lithium Metal Anode[J]. Chem. J. Chinese Universities, 2021, 42(5): 1480.
Current collector | Method for loading lithium | Half cell performance [current density/(mA·cm-2), areal capacity/ (mA·h·cm-2), cycle number/h, CE] | Symmetry cell performance [current density/(mA·cm-2), areal capacity/(mA·h·cm-2), cycle number/h] | Full cell performance (cathode, rate performance and lifespan) | Reference |
---|---|---|---|---|---|
Au@hollow carbon sphere | Electrochemical plating | 0.5, 1, 300, 98% | — | — | [ |
Li4.4Sn@hollow graphene spheres | Electrochemical plating | 0.5, 1, 150, 97.5% | 1, 1, 600 | LiFePO4(12 mg/cm2), 1C, 100 | [ |
S?doped mesoporous carbon nanospheres | Electrochemical plating | 0.5, 1, 220, 97.5% | 0.5, 1, 1600 | LiFePO4, 1C, 300 | [ |
Nitrogen?doped graphitic carbon foams | Electrochemical plating | 2, 2, 300, 99.6% | 2, 1, 200 | LiFePO4, 0.5C, 200 | [ |
Hierarchical silver?nanowire? graphene host | Electrochemical plating | — | 40, 1, 1000 | NMC, 10C, 1000 | [ |
Co@cMOF | Electrochemical plating | 10, 1, 130, 91.5% | 1, 1, 1000 | NMC, 1C, 100 | [ |
Zn@cMOF | Electrochemical plating | — | 0.2, 0.2, 350 | — | [ |
Zn@cMOF | Molten lithium infusion | — | 1, 1, 700 | — | [ |
Carbon nanotube sponge | Electrochemical plating | 1, 2, 90, 98.5% | — | — | [ |
Graphite microtubes | Electrochemical plating | 5, 10, 100, 97.5% | 1, 10, 3000 | LiFePO4(2.0 mg/cm2), 0.5C, 1000 | [ |
Hollow carbon fibers | Electrochemical plating | 0.5, 2, 350, 99.5%; 1, 6, 75, 99% | 2, 1, 600 | LiFePO4, 0.2, 150 | [ |
Carbon nanotube paper | Molten lithium infusion/Electrochemical plating | — | 2, 9.5, 3000 | LiFePO4, 1 mA/cm2, 1000 | [ |
Layered Li?rGO composite film | Molten lithium infusion | — | 3, 1, >100 | — | [ |
Nitrogen?doped graphene | Molten lithium infusion | — | 1, 1, 727 | LiFePO4, 0.2C, 500 | [ |
Ag@carbon fiber paper | Electrochemical plating | 0.5, 2, 110, 98% | — | — | [ |
Vertically grown edge?rich graphene nanosheets@ carbon fiber | Molten lithium infusion | — | 0.5, 1, 1000 | LiFePO4, 1C, 1000 | [ |
Lithiophilic carbon film | Molten lithium infusion | — | 1, 1, 600 | Mg/Ti-LiNiO2, 0.2C, 50 | [ |
Si@carbon fiber | Molten lithium infusion | — | 3, 1, >80 | — | [ |
Graphitized carbon fibers | Electrochemical plating | 0.5, 8, 50, 98% | 2, 1, 170 | LiFePO4, 0.5C, 800 | [ |
TiN@ carbon fibers | Electrochemical plating | 3, 1, 200, 96.8% | 1, 1, 600 | LiFePO4, 1C, 250 | [ |
Mo2N@ carbon fibers | Electrochemical plating | 4, 3, 150, 99.2% | 6, 6, 1500 | NMC811, 3C, 150 | [ |
Current collector | Method for loading lithium | Half cell performance [current density/(mA·cm-2), areal capacity/ (mA·h·cm-2), cycle number/h, CE] | Symmetry cell performance [current density/(mA·cm-2), areal capacity/(mA·h·cm-2), cycle number/h] | Full cell performance (cathode, rate performance and lifespan) | Reference |
Amine?functionalized meso? porous carbon nanofibres | Molten lithium infusion | — | — | NMC622, 353 W·h/kg; NMC811, 381 W·h/kg | [ |
Gradient?distributed ZnO@ carbon fibers | Electrochemical plating | 0.5, 0.5, 700,98.1% | 0.5, 0.5, 1400 | LiFePO4, 1C, 300 | [ |
Au modification on one side of the carbon fibers matrix | Electrochemical plating | 2, 4, 99.0%, 400; 5, 5, 98.0%, 100 | 1, 2, 700 | Li—S(2.0 mA·h/cm2), 0.1C, 100(672 mA·h/g) | [ |
Au modification on one side of the carbon fiber paper | Electrochemical plating | 2, 30, 98.7% | 10, 30, 1000 | Li—S(4.0 mg/cm2), 0.5C, 200(933 mA·h/g) | [ |
LiF@carbonized eggplant | Molten lithium infusion | 1, 2.2, 100, 99.1% | 1, 3, 250 | LiCoO?, 0.2C, 80 | [ |
ZnO@carbonized wood | Molten lithium infusion | — | 3, 1, 225 | — | [ |
ZnO quantum dots@ carbonized bamboo | Electrochemical plating | 1, 1, 200, 96.8% | — | LiCoO2, 0.5C, 160 | [ |
Table 1 Cycling performance comparison of different 3D carbon-based current collectors
Current collector | Method for loading lithium | Half cell performance [current density/(mA·cm-2), areal capacity/ (mA·h·cm-2), cycle number/h, CE] | Symmetry cell performance [current density/(mA·cm-2), areal capacity/(mA·h·cm-2), cycle number/h] | Full cell performance (cathode, rate performance and lifespan) | Reference |
---|---|---|---|---|---|
Au@hollow carbon sphere | Electrochemical plating | 0.5, 1, 300, 98% | — | — | [ |
Li4.4Sn@hollow graphene spheres | Electrochemical plating | 0.5, 1, 150, 97.5% | 1, 1, 600 | LiFePO4(12 mg/cm2), 1C, 100 | [ |
S?doped mesoporous carbon nanospheres | Electrochemical plating | 0.5, 1, 220, 97.5% | 0.5, 1, 1600 | LiFePO4, 1C, 300 | [ |
Nitrogen?doped graphitic carbon foams | Electrochemical plating | 2, 2, 300, 99.6% | 2, 1, 200 | LiFePO4, 0.5C, 200 | [ |
Hierarchical silver?nanowire? graphene host | Electrochemical plating | — | 40, 1, 1000 | NMC, 10C, 1000 | [ |
Co@cMOF | Electrochemical plating | 10, 1, 130, 91.5% | 1, 1, 1000 | NMC, 1C, 100 | [ |
Zn@cMOF | Electrochemical plating | — | 0.2, 0.2, 350 | — | [ |
Zn@cMOF | Molten lithium infusion | — | 1, 1, 700 | — | [ |
Carbon nanotube sponge | Electrochemical plating | 1, 2, 90, 98.5% | — | — | [ |
Graphite microtubes | Electrochemical plating | 5, 10, 100, 97.5% | 1, 10, 3000 | LiFePO4(2.0 mg/cm2), 0.5C, 1000 | [ |
Hollow carbon fibers | Electrochemical plating | 0.5, 2, 350, 99.5%; 1, 6, 75, 99% | 2, 1, 600 | LiFePO4, 0.2, 150 | [ |
Carbon nanotube paper | Molten lithium infusion/Electrochemical plating | — | 2, 9.5, 3000 | LiFePO4, 1 mA/cm2, 1000 | [ |
Layered Li?rGO composite film | Molten lithium infusion | — | 3, 1, >100 | — | [ |
Nitrogen?doped graphene | Molten lithium infusion | — | 1, 1, 727 | LiFePO4, 0.2C, 500 | [ |
Ag@carbon fiber paper | Electrochemical plating | 0.5, 2, 110, 98% | — | — | [ |
Vertically grown edge?rich graphene nanosheets@ carbon fiber | Molten lithium infusion | — | 0.5, 1, 1000 | LiFePO4, 1C, 1000 | [ |
Lithiophilic carbon film | Molten lithium infusion | — | 1, 1, 600 | Mg/Ti-LiNiO2, 0.2C, 50 | [ |
Si@carbon fiber | Molten lithium infusion | — | 3, 1, >80 | — | [ |
Graphitized carbon fibers | Electrochemical plating | 0.5, 8, 50, 98% | 2, 1, 170 | LiFePO4, 0.5C, 800 | [ |
TiN@ carbon fibers | Electrochemical plating | 3, 1, 200, 96.8% | 1, 1, 600 | LiFePO4, 1C, 250 | [ |
Mo2N@ carbon fibers | Electrochemical plating | 4, 3, 150, 99.2% | 6, 6, 1500 | NMC811, 3C, 150 | [ |
Current collector | Method for loading lithium | Half cell performance [current density/(mA·cm-2), areal capacity/ (mA·h·cm-2), cycle number/h, CE] | Symmetry cell performance [current density/(mA·cm-2), areal capacity/(mA·h·cm-2), cycle number/h] | Full cell performance (cathode, rate performance and lifespan) | Reference |
Amine?functionalized meso? porous carbon nanofibres | Molten lithium infusion | — | — | NMC622, 353 W·h/kg; NMC811, 381 W·h/kg | [ |
Gradient?distributed ZnO@ carbon fibers | Electrochemical plating | 0.5, 0.5, 700,98.1% | 0.5, 0.5, 1400 | LiFePO4, 1C, 300 | [ |
Au modification on one side of the carbon fibers matrix | Electrochemical plating | 2, 4, 99.0%, 400; 5, 5, 98.0%, 100 | 1, 2, 700 | Li—S(2.0 mA·h/cm2), 0.1C, 100(672 mA·h/g) | [ |
Au modification on one side of the carbon fiber paper | Electrochemical plating | 2, 30, 98.7% | 10, 30, 1000 | Li—S(4.0 mg/cm2), 0.5C, 200(933 mA·h/g) | [ |
LiF@carbonized eggplant | Molten lithium infusion | 1, 2.2, 100, 99.1% | 1, 3, 250 | LiCoO?, 0.2C, 80 | [ |
ZnO@carbonized wood | Molten lithium infusion | — | 3, 1, 225 | — | [ |
ZnO quantum dots@ carbonized bamboo | Electrochemical plating | 1, 1, 200, 96.8% | — | LiCoO2, 0.5C, 160 | [ |
Metal?base | Current collector | Method for loading lithium | Half cell performance [current density/ (mA·cm-2), areal capacity/ (mA·h·cm-2), cycle number/h, CE] | Symmetry cell performance [current density/(mA·cm-2), areal capacity/ (mA·h·cm-2), cycle number/h] | Full cell performance (cathode, rate performance and lifespan) | Ref. |
---|---|---|---|---|---|---|
Metal foam | Cu2S nanowire@Cu foam | Electrochemical plating | 1, 1, 500, 99.2%; 4, 4, 100, 98% | — | LiFePO4(6.0 mg/cm2), 0.5C, 300 | [ |
Cu nanowire@Cu foam | Molten lithium infusion | — | 10, 1, 200 | LiFePO4(7.5 mg/cm2), 2C, 400 | [ | |
Cu nanowire@Li2O@ Cu foam | Molten lithium infusion | 1, 1, 300, 98.5%; 2, 2, 100, 93% | 3, 1, 600 | LiFePO4, 1C, 500 | [ | |
CuON nanoarray@Cu foam | Molten lithium infusion | 0.5, 1, 200, 98.8%; 2, 1, 100, >98% | 2, 1, 2100 | LiFePO4, 2C, 300 | [ | |
CoO nanofiber@Ni foam | Molten lithium infusion | — | 1, 1, 130 | NCA, 4C, 500 | [ | |
Co3N nanobrush@Ni foam | Electrochemical plating | 0.5, 1, 200, 98.3% | 0.5, 1, 1600 | LiFePO4(2.5 mg/cm2), 0.5C, 600 | [ | |
Nitrogen?doped graphdiyne nanowall@Cu foam | Molten lithium infusion | 1, 1, 250, 98%; 5, 1, 150, 99.6%; 1, 5, 70, >99% | 1, 1, 719 | NCM, 0.2C, 440 | [ | |
Vertically aligned ZnO nanosheets@Ni foam | Molten lithium infusion | 1, 1, 150, 98.5% | 1, 1, 400; 5, 1, 250 | LiFePO4, 0.5C, 100 | [ | |
Cu?CuO@Ni foam | Molten lithium infusion | 1, 1, 250, >95%; 3, 1, 100, >90% | 0.5, 0.5, 580 | — | [ | |
CuBr? and Br?doped graphene?like film@Ni foam | Molten lithium infusion | 2, 2, 300, 98.9% | 1, 1, 850 | LiFePO4(20.3 mg/cm2), 0.7 mA/cm2, 200 | [ | |
Metal?base | Current collector | Method for loading lithium | Half cell performance [current density/ (mA·cm-2), areal capacity/ (mA·h·cm-2), cycle number/h, CE] | Symmetry cell performance [current density/(mA·cm-2), areal capacity/ (mA·h·cm-2), cycle number/h] | Full cell performance (cathode, rate performance and lifespan) | Ref. |
Restructured rimous Cu foam | Electrochemical plating | 3, 1, 220, 98.8% | 3, 1, 200 | LiFePO4, 1C, 330 | [ | |
g?C3N4@Ni foam | Electrochemical plating | 0.5, 1, 300, 98%; 1, 2, 140, 97% | 1, 1, 900 | LiCoO2, 1C, 200 | [ | |
AuLi3@Ni foam | Molten lithium infusion | 0.5, 1, 98%, 100 | 0.5, 1, 740 | LiFePO4, 1C, 500 | [ | |
Compact porous Cu | 3D porous Cu | Electrochemical plating | 1, 1, 140, >97% | 0.2, 1, 1000 | LiFePO4, 0.5C, 300 | [ |
Compact 3D Cu | Electrochemical plating | 1, 1, 200, 97.9% | 1, 1, 400 | LiFePO4, 1C, 350 | [ | |
3D porous Cu | Electrochemical plating | 0.5, 1, 250, >98% | 1, 1, 800 | LiFePO4, 2C, 200 | [ | |
3D porous Cu | Electrochemical plating | 0.52, 0.26, 120, ca. 81% | 0.52, 0.26, 120 | NCM, 50 mA/g, 300 | [ | |
Zn@3D porous Cu | Electrochemical plating | 0.5, 1, 220, 95% | 1, 1, 450 | — | [ | |
N?doped graphene@ compact porous Cu | Electrochemical plating | 0.5, 4, 100, 97.8% | — | LiFePO4(6.4 mg/cm2), 0.5C, 100 | [ | |
Cu mesh | Cu mesh | Mechanical press/ Electrochemical plating | 0.5, 1, 100, 97.5% | 0.5, 1, 230 | Li4Ti5O12, 4C, 500 | [ |
U?LDH?O@Cu mesh | Electrochemical plating | 1, 6, 80, >95% | 2, 1, 200 | — | [ | |
Faceted Cu(100)@Cu mesh | Electrochemical plating | 4, 1, 400, 97% | 2, 1, 300 | LiFePO4, 1C, 120 | [ | |
Cu nanowires network | Electrochemical plating | 1, 2, 200, 98.6% (Average) | 1, 2, 550 | LiCoO2, 5C, 100 | [ | |
Cu nanowires | Cu nanowire network with phosphidation gradient | Electrochemical plating | 1, 1, 150, 97.4% | 1, 1, 1000 | LiFePO4(3 mg/cm2), 0.5C, 300 | [ |
Cu3P nanowires | Molten lithium infusion | 1, 1, 200, 98% | 2, 2, 450 | LiFePO4(9.4 mg/cm2), 1C, 700 | [ |
Metal?base | Current collector | Method for loading lithium | Half cell performance [current density/ (mA·cm-2), areal capacity/ (mA·h·cm-2), cycle number/h, CE] | Symmetry cell performance [current density/(mA·cm-2), areal capacity/ (mA·h·cm-2), cycle number/h] | Full cell performance (cathode, rate performance and lifespan) | Ref. |
---|---|---|---|---|---|---|
Metal foam | Cu2S nanowire@Cu foam | Electrochemical plating | 1, 1, 500, 99.2%; 4, 4, 100, 98% | — | LiFePO4(6.0 mg/cm2), 0.5C, 300 | [ |
Cu nanowire@Cu foam | Molten lithium infusion | — | 10, 1, 200 | LiFePO4(7.5 mg/cm2), 2C, 400 | [ | |
Cu nanowire@Li2O@ Cu foam | Molten lithium infusion | 1, 1, 300, 98.5%; 2, 2, 100, 93% | 3, 1, 600 | LiFePO4, 1C, 500 | [ | |
CuON nanoarray@Cu foam | Molten lithium infusion | 0.5, 1, 200, 98.8%; 2, 1, 100, >98% | 2, 1, 2100 | LiFePO4, 2C, 300 | [ | |
CoO nanofiber@Ni foam | Molten lithium infusion | — | 1, 1, 130 | NCA, 4C, 500 | [ | |
Co3N nanobrush@Ni foam | Electrochemical plating | 0.5, 1, 200, 98.3% | 0.5, 1, 1600 | LiFePO4(2.5 mg/cm2), 0.5C, 600 | [ | |
Nitrogen?doped graphdiyne nanowall@Cu foam | Molten lithium infusion | 1, 1, 250, 98%; 5, 1, 150, 99.6%; 1, 5, 70, >99% | 1, 1, 719 | NCM, 0.2C, 440 | [ | |
Vertically aligned ZnO nanosheets@Ni foam | Molten lithium infusion | 1, 1, 150, 98.5% | 1, 1, 400; 5, 1, 250 | LiFePO4, 0.5C, 100 | [ | |
Cu?CuO@Ni foam | Molten lithium infusion | 1, 1, 250, >95%; 3, 1, 100, >90% | 0.5, 0.5, 580 | — | [ | |
CuBr? and Br?doped graphene?like film@Ni foam | Molten lithium infusion | 2, 2, 300, 98.9% | 1, 1, 850 | LiFePO4(20.3 mg/cm2), 0.7 mA/cm2, 200 | [ | |
Metal?base | Current collector | Method for loading lithium | Half cell performance [current density/ (mA·cm-2), areal capacity/ (mA·h·cm-2), cycle number/h, CE] | Symmetry cell performance [current density/(mA·cm-2), areal capacity/ (mA·h·cm-2), cycle number/h] | Full cell performance (cathode, rate performance and lifespan) | Ref. |
Restructured rimous Cu foam | Electrochemical plating | 3, 1, 220, 98.8% | 3, 1, 200 | LiFePO4, 1C, 330 | [ | |
g?C3N4@Ni foam | Electrochemical plating | 0.5, 1, 300, 98%; 1, 2, 140, 97% | 1, 1, 900 | LiCoO2, 1C, 200 | [ | |
AuLi3@Ni foam | Molten lithium infusion | 0.5, 1, 98%, 100 | 0.5, 1, 740 | LiFePO4, 1C, 500 | [ | |
Compact porous Cu | 3D porous Cu | Electrochemical plating | 1, 1, 140, >97% | 0.2, 1, 1000 | LiFePO4, 0.5C, 300 | [ |
Compact 3D Cu | Electrochemical plating | 1, 1, 200, 97.9% | 1, 1, 400 | LiFePO4, 1C, 350 | [ | |
3D porous Cu | Electrochemical plating | 0.5, 1, 250, >98% | 1, 1, 800 | LiFePO4, 2C, 200 | [ | |
3D porous Cu | Electrochemical plating | 0.52, 0.26, 120, ca. 81% | 0.52, 0.26, 120 | NCM, 50 mA/g, 300 | [ | |
Zn@3D porous Cu | Electrochemical plating | 0.5, 1, 220, 95% | 1, 1, 450 | — | [ | |
N?doped graphene@ compact porous Cu | Electrochemical plating | 0.5, 4, 100, 97.8% | — | LiFePO4(6.4 mg/cm2), 0.5C, 100 | [ | |
Cu mesh | Cu mesh | Mechanical press/ Electrochemical plating | 0.5, 1, 100, 97.5% | 0.5, 1, 230 | Li4Ti5O12, 4C, 500 | [ |
U?LDH?O@Cu mesh | Electrochemical plating | 1, 6, 80, >95% | 2, 1, 200 | — | [ | |
Faceted Cu(100)@Cu mesh | Electrochemical plating | 4, 1, 400, 97% | 2, 1, 300 | LiFePO4, 1C, 120 | [ | |
Cu nanowires network | Electrochemical plating | 1, 2, 200, 98.6% (Average) | 1, 2, 550 | LiCoO2, 5C, 100 | [ | |
Cu nanowires | Cu nanowire network with phosphidation gradient | Electrochemical plating | 1, 1, 150, 97.4% | 1, 1, 1000 | LiFePO4(3 mg/cm2), 0.5C, 300 | [ |
Cu3P nanowires | Molten lithium infusion | 1, 1, 200, 98% | 2, 2, 450 | LiFePO4(9.4 mg/cm2), 1C, 700 | [ |
1 | Cheng X. B., Zhang R., Zhao C. Z., Zhang Q., Chem. Rev., 2017, 117(15), 10403―10473 |
2 | Qian J., Henderson W. A., Xu W., Bhattacharya P., Engelhard M., Borodin O., Zhang J., Nat. Commun., 2015, 6, 6362 |
3 | He X., Liu X., Han Q., Zhang P., Song X., Zhao Y., Angew. Chem. Int. Ed., 2020, 59(16), 6397―6405 |
4 | Cha E., Patel M. D., Park J., Hwang J., Prasad V., Cho K., Choi W., Nat. Nanotechnol., 2018, 13(4), 337―344 |
5 | Zhao Y., Ye Y., Wu F., Li Y., Li L., Chen R., Adv. Mater., 2019, 31(12), e1806532 |
6 | Liu Y., Lin D., Yuen P. Y., Liu K., Xie J., Dauskardt R. H., Cui Y., Adv. Mater., 2017, 29(10), 1605531 |
7 | Liu S., Xia X., Deng S., Xie D., Yao Z., Zhang L., Zhang S., Wang X., Tu J., Adv. Mater., 2019, 31(3), e1806470 |
8 | Liu Y., Lin D., Liang Z., Zhao J., Yan K., Cui Y., Nat. Commun., 2016, 7, 10992 |
9 | Yang C., Yin Y., Zhang S., Li N. , Guo Y., Nat. Commun., 2015, 6, 8058 |
10 | Li G., Gao Y., He X., Huang Q., Chen S., Kim S. H., Wang D., Nat. Commun., 2017, 8(1), 850 |
11 | Zheng J., Engelhard M. H., Mei D., Jiao S., Polzin B. J., Zhang J. G., Xu W., Nat. Energy, 2017, 2(3), 17012 |
12 | Zhang X., Wang S., Xue C., Xin C., Lin Y., Shen Y., Li L., Nan C. W., Adv. Mater., 2019, 31(11), e1806082 |
13 | Zhou D., Tkacheva A., Tang X., Sun B., Shanmukaraj D., Li P., Zhang F., Armand M., Wang G., Angew. Chem. Int. Ed., 2019, 58(18), 6001―6006 |
14 | Cohen Y. S., Cohen. Y., Aurbach. D., J. Phys. Chem. B, 2000, 104, 12282―12291 |
15 | Jun⁃ichi Y., Shin⁃ichi T., Katsuya H., Keiichi S., Yasue N., Masayasu A., J. Power Sources, 1998, 74, 219―227 |
16 | Sand H. J. S., Philos. Mag., 2010, 1(1), 45―79 |
17 | Rosso M., Brissot C., Teyssot A., Dollé M., Sannier L., Tarascon J. M., Bouchet R., Lascaud S., Electrochim. Acta, 2006, 51(25), 5334―5340 |
18 | Cheng X., Zhang R., Zhao C., Zhang Q., Chem. Rev., 2017, 117(15), 10403―10473 |
19 | Jin S., Jiang Y., Ji H., Yu Y., Adv. Mater., 2018, 30(48), e1802014 |
20 | Lee B., Paek E., Mitlin D., Lee S. W., Chem. Rev., 2019, 119(8), 5416―5460 |
21 | Tantratian K., Cao D., Abdelaziz A., Sun X., Sheng J., Natan A., Chen L., Zhu H., Adv. Energy Mater., 2019, 10(5), 1902819 |
22 | Chen K. H., Sanchez A. J., Kazyak E., Davis A. L., Dasgupta N. P., Adv. Energy Mater., 2019, 9(4), 1802534 |
23 | Brady R. M., Ball R. C., Nature, 1984, 309(17), 225―229 |
24 | Li G., Liu Z., Huang Q., Gao Y., Regula M., Wang D., Chen L. Q., Wang D., Nat. Energy, 2018, 3(12), 1076―1083 |
25 | Pu J., Li J., Zhang K., Zhang T., Li C., Ma H., Zhu J., Braun P. V., Lu J., Zhang H., Nat. Commun., 2019, 10(1), 1896 |
26 | Lu L., Ge J., Yang J., Chen S., Yao H., Zhou F., Yu S., Nano. Lett., 2016, 16(7), 4431―4437 |
27 | Ke X., Liang Y., Ou L., Liu H., Chen Y., Wu W., Cheng Y., Guo Z., Lai Y., Liu P., Shi Z., Energy Storage Mater., 2019, 23, 547―555 |
28 | Zou P., Chiang S. W., Li J., Wang Y., Wang X., Wu D., Nairan A., Kang F., Yang C., Energy Storage Mater., 2019, 18, 155―164 |
29 | Li J., Zou P., Chiang S. W., Yao W., Wang Y., Liu P., Liang C., Kang F., Yang C., Energy Storage Mater., 2020, 24, 700―706 |
30 | Xiang J., Yuan L., Shen Y., Cheng Z., Yuan K., Guo Z., Zhang Y., Chen X., Huang Y., Adv. Energy Mater., 2018, 8(36), 1802352 |
31 | Nan Y., Li S., Shi Y., Yang S., Li B., Small, 2019, 15(45), e1903520 |
32 | Liao Y., Yuan L., Xiang J., Zhang W., Cheng Z., He B., Li Z., Huang Y., Nano Energy, 2020, 69, 104471 |
33 | Deng W., Zhu W., Zhou X., Zhao F., Liu Z., Energy Storage Mater., 2019, 23, 693―700 |
34 | Wang S., Yue J., Dong W., Zuo T., Li J., Liu X., Zhang X., Liu L., Shi J., Yin Y., Guo Y., Nat. Commun., 2019, 10(1), 4930 |
35 | Lin D., Liu Y., Liang Z., Lee H. W., Sun J., Wang H., Yan K., Xie J., Cui Y., Nat. Nanotechnol., 2016, 11(7), 626―632 |
36 | Liu S., Xia X., Zhong Y., Deng S., Yao Z., Zhang L., Cheng X. B., Wang X., Zhang Q., Tu J., Adv. Energy Mater., 2018, 8(8), 1702322 |
37 | Liang Z., Lin D., Zhao J., Lu Z., Liu Y., Liu C., Lu Y., Wang H., Yan K., Tao X., Cui Y., Proc. Natl. Acad. Sci. USA, 2016, 113(11), 2862―2867 |
38 | Zhao B., Li B., Wang Z., Xu C., Liu X., Yi J., Jiang Y., Li W., Li Y., Zhang J., ACS. Appl. Mater. Interfaces, 2020, 12(17), 19530―19538 |
39 | Chi S. S., Liu Y., Song W. L., Fan L. Z., Zhang Q., Adv. Funct. Mater., 2017, 27(24), 1700348 |
40 | Yue X. Y., Wang W. W., Wang Q. C., Meng J. K., Zhang Z. Q., Wu X. J., Yang X. Q., Zhou Y. N., Energy Storage Mater., 2018, 14, 335―344 |
41 | Liang X., Pang Q., Kochetkov I. R., Sempere M. S., Huang H., Sun X., Nazar L. F., Nat. Energy, 2017, 2(9), 17119 |
42 | Deng W., Liang S., Zhou X., Zhao F., Zhu W. , Liu Z., J. Mater. Chem. A, 2019, 7(11), 6267―6274 |
43 | Yang G., Li Y., Tong Y., Qiu J., Liu S., Zhang S., Guan Z., Xu B., Wang Z., Chen L., Nano. Lett., 2019, 19(1), 494―499 |
44 | Jin S., Sun Z., Guo Y., Qi Z., Guo C., Kong X., Zhu Y. , Ji H., Adv. Mater., 2017, 29(38), 1700783 |
45 | Liu L., Yin Y. X., Li J. Y., Li N. W., Zeng X. X., Ye H., Guo Y. G., Wan L. J., Joule, 2017, 1(3), 563―575 |
46 | Zhang Y., Luo W., Wang C., Li Y., Chen C., Song J., Dai J., Hitz E. M., Xu S., Yang C., Wang Y., Hu L., Proc. Natl. Acad. Sci. USA, 2017, 114(14), 3584―3589 |
47 | Cui J., Yao S., Ihsan⁃Ul⁃Haq M., Wu J., Kim J. K., Adv. Energy Mater., 2019, 9(1), 1802777 |
48 | Xue P., Liu S., Shi X., Sun C., Lai C., Zhou Y., Sui D., Chen Y., Liang J., Adv. Mater., 2018, 30(44), e1804165 |
49 | Wang H., Lin D., Xie J., Liu Y., Chen H., Li Y., Xu J., Zhou G., Zhang Z., Pei A., Zhu Y., Liu K., Wang K., Cui Y., Adv. Energy Mater., 2019, 9(7), 1802720 |
50 | Liu L., Yin Y., Li J., Wang S., Guo Y., Wan L., Adv. Mater., 2018, 30(10), 1706216 |
51 | Deng W., Zhou X., Fang Q., Liu Z., Adv. Energy Mater., 2018, 8(12), 1703152 |
52 | Huang G., Han J., Zhang F., Wang Z., Kashani H., Watanabe K., Chen M., Adv. Mater., 2019, 31(2), e1805334 |
53 | Phattharasupakun N., Wutthiprom J., Duangdangchote S., Sawangphruk M., Chem. Commun., 2019, 55(40), 5689―5692 |
54 | Chen Q., Yang Y., Zheng H., Xie Q., Yan X., Ma Y., Wang L., Peng D. L., J. Mater. Chem. A, 2019, 7(19), 11683―11689 |
55 | Zhao J., Zhou G., Yan K., Xie J., Li Y., Liao L., Jin Y., Liu K., Hsu P., Wang J., Cheng H., Cui Y., Nat. Nanotechnol., 2017, 12(10), 993―999 |
56 | Li X., Yang G., Zhang S., Wang Z., Chen L., Nano Energy, 2018, 66, 104144 |
57 | Chen Y., Ke X., Cheng Y., Fan M., Wu W., Huang X., Liang Y., Zhong Y., Ao Z., Lai Y., Wang G., Shi Z., Energy Storage Mater., 2020, 26, 56―64 |
58 | Yan K., Lu Z., Lee H. W., Xiong F., Hsu P. C., Li Y., Zhao J., Chu S. , Cui Y., Nat. Energy, 2016, 1(3), 16010 |
59 | Wang T. S., Liu X., Zhao X., He P., Nan C. W. , Fan L. Z., Adv. Funct. Mater., 2020, 30(16), 2000786 |
60 | Kim J., Lee J., Yun J., Choi S. H., Han S. A., Moon J., Kim J. H., Lee J. W. , Park M. S., Adv. Funct. Mater., 2020, 30(15), 1910538 |
61 | Zhu M., Li B., Li S., Du Z., Gong Y. , Yang S., Adv. Energy Mater., 2018, 8(18), 1703505 |
62 | Zhang R., Chen X., Chen X., Cheng X., Zhang X., Yan C. , Zhang Q., Angew. Chem. Int. Ed., 2017, 56(27), 7764―7768 |
63 | Niu C., Pan H., Xu W., Xiao J., Zhang J., Luo L., Wang C., Mei D., Meng J., Wang X., Liu Z., Mai L. , Liu J., Nat. Nanotechnol., 2019, 14(6), 594―601 |
64 | Zhang F., Liu X., Yang M., Cao X., Huang X., Tian Y., Zhang F. , Li H., Nano Energy, 2020, 69, 104443 |
65 | Noh J., Tan J., Yadav D., Wu P., Xie K. Y. , Yu C., Nano. Lett., 2020, 20(5), 3681―3687 |
66 | Zuo T., Wu X., Yang C., Yin Y., Ye H., Li N. , Guo Y., Adv. Mater., 2017, 29(29), 1700389 |
67 | Lin K., Qin X., Liu M., Xu X., Liang G., Wu J., Kang F., Chen G. , Li B., Adv. Funct. Mater., 2019, 29(46), 1903229 |
68 | Luo L., Li J., Yaghoobnejad Asl H. , Manthiram A., Adv. Mater., 2019, 31(48), e1904537 |
69 | Sun Y., Zheng G., Seh Zhi W., Liu N., Wang S., Sun J., Lee Hye R. , Cui Y., Chem, 2016, 1(2), 287―297 |
70 | Ye H., Xin S., Yin Y., Li J. Y., Guo Y. , Wan L. J., J. Am. Chem. Soc., 2017, 139(16), 5916―5922 |
71 | Jiang Y., Jiang J., Wang Z., Han M., Liu X., Yi J., Zhao B., Sun X. , Zhang J., Nano Energy, 2020, 70, 104504 |
72 | Sun Z., Jin S., Jin H., Du Z., Zhu Y., Cao A., Ji H. , Wan L., Adv. Mater., 2018, 30(32), e1800884 |
73 | Song Q., Yan H., Liu K., Xie K., Li W., Gai W., Chen G., Li H., Shen C., Fu Q., Zhang S., Zhang L. , Wei B., Adv. Energy Mater., 2018, 8(22), 1800564 |
74 | Tao L., Hu A., Yang Z., Xu Z., Wall C. E., Esker A. R., Zheng Z. , Lin F., Adv. Funct. Mater., 2020, 2000585 |
75 | Jin C., Sheng O., Luo J., Yuan H., Fang C., Zhang W., Huang H., Gan Y., Xia Y., Liang C., Zhang J. , Tao X., Nano Energy, 2017, 37, 177―186 |
76 | Zhang X., Wang A., Lv R. , Luo J., Energy Storage Mater., 2019, 18, 199―204 |
77 | Zhai P., Wei Y., Xiao J., Liu W., Zuo J., Gu X., Yang W., Cui S., Li B., Yang S. , Gong Y., Adv. Energy Mater., 2020, 10(8), 1903339 |
78 | Adair K. R., Iqbal M., Wang C., Zhao Y., Banis M. N., Li R., Zhang L., Yang R., Lu S. , Sun X., Nano Energy, 2018, 54, 375―382 |
79 | Tan L., Li X., Cheng M., Liu T., Wang Z., Guo H., Yan G., Li L., Liu Y. , Wang J., J. Power Sources, 2020, 463, 228178 |
80 | Lei M., You Z., Ren L., Liu X. , Wang J. G., J. Power Sources, 2020, 463, 228191 |
81 | Lei M., Wang J. G., Ren L., Nan D., Shen C., Xie K. , Liu X., ACS. Appl. Mater. Interfaces, 2019, 11(34), 30992―30998 |
82 | Jiang T., Chen K., Wang J., Hu Z., Wang G., Chen X. D., Sun P., Zhang Q., Yan C. , Zhang L., J. Mater. Chem. A, 2019, 7(48), 27535―27546 |
83 | Zhao F., Zhou X., Deng W. , Liu Z., Nano Energy, 2019, 62, 55―63 |
84 | Wu S., Zhang Z., Lan M., Yang S., Cheng J., Cai J., Shen J., Zhu Y., Zhang K. , Zhang W., Adv. Mater., 2018, 30(9), 1705830 |
85 | Yun Q., He Y. B., Lv W., Zhao Y., Li B., Kang F. , Yang Q., Adv. Mater., 2016, 28(32), 6932―6939 |
86 | Zhao H., Lei D., He Y. B., Yuan Y., Yun Q., Ni B., Lv W., Li B., Yang Q. H., Kang F. , Lu J., Adv. Energy Mater., 2018, 8(19), 1800266 |
87 | Qiu H., Tang T., Asif M., Huang X. , Hou Y., Adv. Funct. Mater., 2019, 29(19), 1808468 |
88 | An Y., Fei H., Zeng G., Xu X., Ci L., Xi B., Xiong S., Feng J. , Qian Y., Nano Energy, 2018, 47, 503―511 |
89 | Lin K., Li T., Chiang S. W., Liu M., Qin X., Xu X., Zhang L., Kang F., Chen G. , Li B., Small, 2020, 2001784 |
90 | Li Q., Zhu S. , Lu Y., Adv. Funct. Mater., 2017, 27(18), 1606422 |
91 | Lu Z., Liang Q., Wang B., Tao Y., Zhao Y., Lv W., Liu D., Zhang C., Weng Z., Liang J., Li H. , Yang Q. H., Adv. Energy Mater., 2019, 9(7), 1803186 |
92 | Zhang R., Wen S., Wang N., Qin K., Liu E., Shi C. , Zhao N., Adv. Energy Mater., 2018, 8(23), 1800914 |
93 | Chen X., Chen X., Hou D., Li B., Cheng X., Zhang R. , Zhang Q., Sci. Adv., 2019, 5, eaau7728 |
94 | Duan H., Zhang J., Chen X., Zhang X., Li J., Huang L., Zhang X., Shi J., Yin Y., Zhang Q., Guo Y., Jiang L. , Wan L., J. Am. Chem. Soc., 2018, 140(51), 18051―18057 |
95 | Xu P., Lin X., Hu X., Cui X., Fan X., Sun C., Xu X., Chang J. K., Fan J., Yuan R., Mao B., Dong Q. , Zheng M., Energy Storage Mater., 2020, 28, 188―195 |
96 | Sun C., Lin A., Li W., Jin J., Sun Y., Yang J. , Wen Z., Adv. Energy Mater., 2019, 10(3), 1902989 |
97 | Huang K., Li Z., Xu Q., Liu H., Li H. , Wang Y., Adv. Energy Mater., 2019, 9(29), 1900853 |
98 | Li Z., Liu K., Fan K., Yang Y., Shao M., Wei M. , Duan X., Angew. Chem. Int. Ed., 2019, 58(12), 3962―3966 |
99 | Zhang C., Lyu R., Lv W., Li H., Jiang W., Li J., Gu S., Zhou G., Huang Z., Zhang Y., Wu J., Yang Q. , Kang F., Adv. Mater., 2019, 31(48), e1904991 |
100 | Lin K., Xu X., Qin X., Zhang G., Liu M., Lv F., Xia Y., Kang F., Chen G. , Li B., Energy Storage Mater., 2020, 26, 250―259 |
101 | Zhang D., Dai A., Wu M., Shen K., Xiao T., Hou G., Lu J. , Tang Y., ACS Energy Lett., 2019, 5(1), 180―186 |
102 | Gu Y., Xu H., Zhang X., Wang W., He J., Tang S., Yan J., Wu D., Zheng M., Dong Q. , Mao B., Angew. Chem. Int. Ed., 2019, 58(10), 3092―3096 |
103 | Zhang X., Lv R., Wang A., Guo W., Liu X. , Luo J., Angew. Chem. Int. Ed., 2018, 57(46), 15028―15033 |
104 | Zhang D., Wang S., Li B., Gong Y. , Yang S., Adv. Mater., 2019, 31(33), e1901820 |
105 | Gu J., Zhu Q., Shi Y., Chen H., Zhang D., Du Z. , Yang S., ACS Nano, 2020, 14(1), 891―898 |
106 | Shi H., Zhang C. J., Lu P., Dong Y., Wen P. , Wu Z., ACS Nano, 2019, 13(12), 14308―14318 |
107 | Cao Z., Zhu Q., Wang S., Zhang D., Chen H., Du Z., Li B. , Yang S., Adv. Funct. Mater., 2019, 30(5), 1908075 |
108 | Yoon I., Jurng S., Abraham D. P., Lucht B. L., Guduru P. R., Nano Lett., 2018, 18(9), 5752―5759 |
109 | Lopez J., Pei A., Oh J. Y., Wang G. J. N., Cui Y. , Bao Z., J. Am. Chem. Soc., 2018, 140(37), 11735―11744 |
110 | Wang X., Zeng W., Hong L., Xu W., Yang H., Wang F., Duan H., Tang M. , Jiang H., Nat. Energy, 2018, 3(3), 227―235 |
111 | Chen J., Zhao J., Lei L., Li P., Chen J., Zhang Y., Wang Y., Ma Y. , Wang D., Nano Lett., 2020, 20(5), 3403―3410 |
112 | Ye L., Feng P., Chen X., Chen B., Gonzalez K., Liu J., Kim I. , Li X., Energy Storage Mater., 2020, 26, 371―377 |
[1] | LI Wei, LUO Piao, HUANG Lianzhan, CUI Zhiming. Lithium Polystyrene Sulfonate Based Interfacial Protective Layer for Lithium Metal Anodes [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220166. |
[2] | LI Weihui, LI Haobo, ZENG Cheng, LIANG Haoyue, CHEN Jiajun, LI Junyong, LI Huiqiao. Hot-pressed PVDF-based Difunctional Protective Layer for Lithium Metal Anodes [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210629. |
[3] | WANG Zengqiang, SUN Yiling, QIAN Zhengfang, WANG Renheng. Advances in Lithium Metal Batteries Based on Surface Interface Reaction and Optimization [J]. Chem. J. Chinese Universities, 2021, 42(4): 1017. |
[4] | WANG Fengchun, ZHOU Wanli. Influences of Ionic Additive Tetrabutylammonium-bis(fluorosulfonyl)imide on Performance of Lithium Metal Batteries† [J]. Chem. J. Chinese Universities, 2018, 39(11): 2529. |
[5] | ZHANG Cun-Zhong, LIU Zhen, LIN Li-Jun, QI Fei, WU Feng. Selective Electrochemical Synthesis of Ferrate on SnO2-Sb2O3/Ti Electrodes [J]. Chem. J. Chinese Universities, 2005, 26(5): 927. |
[6] | HUANG Zong-Hao, KAN Yu-He, XU Dong, MA Shu-Rong, YANG Gui-Xia, MENG Su-Ci, SU Zhong-Min. Theoretical Studies on the Charge and Discharge Processes of Graphite Cathode with DFT Method [J]. Chem. J. Chinese Universities, 2005, 26(12): 2289. |
[7] | HUANG Zong-Hao, KAN Yu-He, XU Dong, MA Shu-Rong, YANG Gui-Xia, MENG Su-Ci, SU Zhong-Min. Theoretical Studies on the Charge and Discharge Processes of Graphite Cathode with DFT Method [J]. Chem. J. Chinese Universities, 2005, 26(12): 2289. |
[8] | WAN Chuan-Yun, NULI Yan-Na, JIANG Zhi-Yu. Rare Earth Elements-Doped Spinel LiM0.02 Mn1.98O4 as the Cathodic Materials for Lithium Ion Batteries [J]. Chem. J. Chinese Universities, 2002, 23(1): 126. |
[9] | LIN Dong-Feng, CHEN Shuang-Rui, CAI Rong, SONG De-Ying, SHEN Pan-Wen. The Effects of Various Factors in Orthogonal Table on Charging Efficiency of Iron Electrode [J]. Chem. J. Chinese Universities, 2001, 22(S1): 13. |
[10] | Zhang Xi-yan, Xie De-min, Wang Rong-shun, Fu Yu-jie, Wang Chun-guo, Zhao Cheng-da, Li Chang-zhi, Wang Bao-chen. Studies on Polymer Secondary Battery Employing Polyacenic Semiconductor [J]. Chem. J. Chinese Universities, 1991, 12(9): 1275. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||