Chem. J. Chinese Universities ›› 2019, Vol. 40 ›› Issue (4): 617.doi: 10.7503/cjcu20190050
• Review • Previous Articles Next Articles
QU Dawei1,2, LI Xin1,*(), CHEN Guangming2,*(
)
Received:
2019-01-16
Online:
2019-04-10
Published:
2019-04-10
Contact:
LI Xin,CHEN Guangming
E-mail:clylx@bift.edu.cn;chengm@szu.edu.cn
Supported by:
CLC Number:
TrendMD:
QU Dawei, LI Xin, CHEN Guangming. Fabrication and Properties of Flexible Thermoelectric Devices†[J]. Chem. J. Chinese Universities, 2019, 40(4): 617.
Fig.2 Serial-typeflexible thermoelectric device[25](A) Illustration of screen-printed BiTe/SbTe device; (B) the corresponding fabrication process. Copyright 2014, Royal Institute of Physics.
Fig.3 Schematic illustration of serial device with five pairs of p-n junctions(A) and molecular structures of polymers(B)[27] Copyright 2017, American Chemical Society.
Fig.4 Flexible textile thermoelectric devices containing n-type yarns with high air-stability and resilience to mechanical bending[33] (A) 4 p-n pair; (B) 38 p-n pair. Copyright 2018, American Chemical Society.
Fig.5 Schematic illustration of the flexible thermoelectric device without metal electrodes based on carbon nanotube yarn(CNTY)[34] Copyright 2017, American Chemical Society.
Fig.7 Schematic of assembly process of p-type and n-type carbon nanotube films(A), one module(stack) consists of 9 p-type and 9 n-type films(B), the module bound by a PTFE tape(C), a device design that maximizes thermoelectricvoltage generation for a given temperature gradient(D) and completed thermoelectric device consists of 72 p-type and 72 n-type films(E)[36]Copyright 2014, American Chemical Society.
[1] | International Energy Outlook 2016, Office of Energy Analysis, U. S. Energy Information Administration, Washington DC, Outlook 2016, Office of Energy Analysis, U. S. Energy Information Administration, Washington DC, USA, 2016 |
[2] | Lawrence Livermore National Laboratory, Estimated U. S. Energy Consumption in 2016, |
[3] | Yin X., Liu J. Y., Chen L., Wu L. M., Acc. Chem.Res.,2018, 51(2), 240—247 |
[4] | Yazdani S., Pettes M. T., Nanotechnology,2018, 29(43), 432001 |
[5] | Chen G., Xu W., Zhu D., J. Mater. Chem.C,2017, 5(18), 4350—4360 |
[6] | Hu X., Chen G., Wang X., Compos. Sci.Technol.,2017, 144, 43—50 |
[7] | Wu L., Chen G., Li Z., Small,2017, 13(23), 1604070-1—1604070-7 |
[8] | Gao C., Chen G., Small,2018, 14(12), 1703453 |
[9] | Zhao J., Tan D., Chen G., J. Mater. Chem.C,2017, 5(1), 47—53 |
[10] | Biswas K., He J., Zhang Q., Wang G., Uher C., Dravid V. P., Kanatzidis M. G., Nat.Chem.,2011, 3(2), 160—166 |
[11] | Chen J., Wang Z., Joule,2017, 1(3), 450—521 |
[12] | Yao Q., Chen L., Zhang W., Liufu S., Chen X., ACS Nano,2010, 4(4), 2445—2451 |
[13] | Hu X., Chen G., Wang X., Wang H., J. Mater. Chem.A,2015, 3(42), 20896—20902 |
[14] | Liang L., Chen G., Guo C. Y., Mater. Chem.Front.,2017, 1(2), 380—386 |
[15] | Xu K., Chen G., Qiu D., J. Mater. Chem.A,2013, 1(40), 12395—12399 |
[16] | Fan W., Guo C. Y., Chen G., J. Mater. Chem.A,2018, 6(26), 12275—12280 |
[17] | Chen G., Xu W., Zhu D., J. Mater. Chem.C,2017, 5(18), 4350—4360 |
[18] | Hu X., Chen G., Wang X., Compos. Sci.Technol.,2017, 144, 43—50 |
[19] | Feng N., Gao C., Guo C. Y., Chen G., ACS Appl. Mater.Interfaces,2018, 10(6), 5603—5608 |
[20] | Tan D., Zhao J., Gao C., Wang H., Chen G., Shi D., ACS Appl. Mater.Interfaces,2017, 9(26), 21820—21828 |
[21] | Zhao J., Tan D., Chen G., J. Mater. Chem.C,2017,5(1), 47—53 |
[22] | Gao C., Chen G., Compos. Sci.Technol.,2016, 124, 52—70 |
[23] | Liang L., Chen G., Guo C. Y., Compos. Sci.Technol.,2016,129, 130—136 |
[24] | Xue Y., Gao C., Liang L., Wang X., Chen G., J. Mater. Chem.A,2018, 6(45), 22381—22390 |
[25] | Cao Z., Koukharenko E., Torah R. N., Tudor J., Beeby S. P., J. Phys.: ConferenceSeries,2014, 557, 012016 |
[26] | Wu G., Zhang Z. G., Li Y., Gao C., Wang X., Chen G., ACS Nano,2017, 11(6), 5746—5752 |
[27] | Madan D., Wang Z., Chen A., Juang R. C., Keist J., Wright P. K., Evans J. W., ACS Appl. Mater.Interfaces,2012, 4(11), 6117—6124 |
[28] | Cheng X., Wang X., Chen G., J. Mater. Chem.A,2018, 6(39), 19030—19037 |
[29] | Hong C. T., Kang Y. H., Ryu J., Cho S. Y., Jang K. S., J. Mater. Chem.A,2015,3(43), 21428—21433 |
[30] | Liang L., Gao C., Chen G., Guo C. Y., J. Mater. Chem.C,2016, 4(3), 526—532 |
[31] | Kim J. Y., Mo J. H., Kang Y. H., Cho S. Y., Jang K. S., Nanoscale,2018, 10(42), 19766—19773 |
[32] | Ryan J. D., Mengistie D. A., Gabrielsson R., Lund A., Muller C., ACS Appl. Mater.Interfaces,2017, 9(10), 9045—9050 |
[33] | Ryan J. D., Lund A., Hofmann A. I., Kroon R., Sarabia-Riquelme R., Weisenberger M. C., Muller C., ACS Appl. EnergyMater.,2018, 1(6), 2934—2941 |
[34] | Choi J., Jung Y., Yang S. J., Oh J. Y., Oh J., Jo K., Son J. G., Moon S. E., Park C. R., Kim H., ACS Nano,2017, 11(8), 7608—7614 |
[35] | Wu G., Gao C., Chen G., Wang X., Wang H., J. Mater. Chem.A,2016, 4(37), 14187—14193 |
[36] | Kim S. L., Choi K., Tazebay A., Yu C., ACS Nano,2014,8(3), 2377—2386 |
[37] | Zhou W., Fan Q., Zhang Q., Cai L., Li K., Gu X., Yang F., Zhang N., Wang Y., Liu H., Zhou W., Xie S., Nat.Commun.,2017, 8, 14886 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||