Chem. J. Chinese Universities ›› 2017, Vol. 38 ›› Issue (11): 2038.doi: 10.7503/cjcu20170021
• Physical Chemistry • Previous Articles Next Articles
ZHENG Jiawei1,2, JIANG Ling1, DING Yong1,3, MO Lie1, DING Youcai1,2, HU Linhua1,*(), DAI Songyuan1,3,*(
)
Received:
2017-01-10
Online:
2017-11-10
Published:
2017-10-30
Contact:
HU Linhua,DAI Songyuan
E-mail:lhhu@rntek.cas.cn;sydai@ipp.ac.cn
Supported by:
CLC Number:
TrendMD:
ZHENG Jiawei, JIANG Ling, DING Yong, MO Lie, DING Youcai, HU Linhua, DAI Songyuan. Influence of Au Doping on the Surface States and Charge Transport in TiO2 Films†[J]. Chem. J. Chinese Universities, 2017, 38(11): 2038.
Fig.4 Peak current of TiO2-1 film under different scan rates(A) and cyclic voltammograms of TiO2-1(a), TiO2-2(b) and TiO2-3(c) films at the scan rate of 500 mV/s(B)
Fig.5 General transmission line model of DSSCsRs: Square resistance; Rco: interface resistance between TCO and TiO2; Cco: interface capacitance between TCO and TiO2; Rt: transmission resistance of electrons in TiO2; Cμ: interface capacitance between TiO2 and solution; Rct: interface resistance between TiO2 and solution; RTCO: interface resistance between TCO and solution; CTCO: interface capacitance between TCO and solution; Zd: impedance of solution; RPt: interface resistance between Pt and solution; CPt: interface capacitance between Pt and solution.
Fig.9 Nyquist plots of the three photoanode-based DSSCs at -0.72 V in dark conditionsRs is the series resistance, CPE1 and Rct1 are the double-layer capacitance and charge-transfer resistance between Pt counter electrode and electrolyte. CPE2 and Rct2 are the chemical capacitance and charge-transfer resistance between the mesoscopic TiO2 film and electrolyte. ZW is the diffusion impedance.
Cell | Jsc/(mA·cm-2) | Voc/mV | FF | η(%) |
---|---|---|---|---|
DSSC-1 | 13.90±0.18 | 688±8 | 0.73±0.01 | 6.99±0.12 |
DSSC-2 | 14.30±0.29 | 702±3 | 0.74±0.01 | 7.48±0.10 |
DSSC-3 | 14.07±0.12 | 695±3 | 0.74±0.01 | 7.22±0.08 |
Table 1 Photovoltaic characteristics of DSSCs with the three photoanodes
Cell | Jsc/(mA·cm-2) | Voc/mV | FF | η(%) |
---|---|---|---|---|
DSSC-1 | 13.90±0.18 | 688±8 | 0.73±0.01 | 6.99±0.12 |
DSSC-2 | 14.30±0.29 | 702±3 | 0.74±0.01 | 7.48±0.10 |
DSSC-3 | 14.07±0.12 | 695±3 | 0.74±0.01 | 7.22±0.08 |
[1] | Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., Science,2001, 293, 269-271 |
[2] | Zhang J. C., Wen Y., Li Q. Y., Han Z. Y., Fu Z. H., Cao W. l., Chem. J. Chinese Universities,2010, 31(5), 998-1002 |
[3] | Guo Y., Hu J., Wan L., Adv. Mater., 2008, 20, 2878-2887 |
[4] | Jiang Y., Xia Y., Zhang M., Sun W., Liu Y., Zhao X., Mater. Lett., 2015, 161, 491-494 |
[5] | Gratzel M., Natur., 2001, 414, 338-344 |
[6] | Bisquert J., Fabregatsantiago F., Morasero I., Garciabelmonte G., Barea E. M., Palomares E., Chem. J. Chinese Universities,2010, 31, 684-698 |
[7] | Fabregatsantiago F., Morasero I., Garciabelmonte G., Bisquert J., Chem. J. Chinese Universities,2010, 31, 758-768 |
[8] | Bisquert J., Zaban A., Greenshtein M., Morasero I., J. Am. Chem. Soc., 2004, 126, 13550-13559 |
[9] | Salvador P., Hidalgo M. G., Zaban A., Bisquert J., Chem. J. Chinese Universities,2010, 31, 15915-15926 |
[10] | Anta J. A., Nelson J., Quirke N., Chem. J. Chinese Universities,2010, 31, 125324 |
[11] | Bisquert J., Zaban A., Salvador P., Chem. J. Chinese Universities,2010, 31, 8774-8782 |
[12] | Nelson J., Chandler R. E., Coord. Chem. Rev., 2004, 248, 1181-1194 |
[13] | Nelson J., Haque S. A., Klug D. R., Durrant J. R., Chem. J. Chinese Universities,2010, 31, 205321 |
[14] | Nelson J., Phys. Rev. B, 1999, 59, 15374-15380 |
[15] | Ding Y., Mo L. E., Tao L., Ma Y. C., Hu L. H., Huang Y., Fang X. Q., Yao J., Xi X., Dai S. Y., Chem. J. Chinese Universities,2010, 31, 1046-1052 |
[16] | Ding Y., Zhou L., Mo L. E., Jiang L., Hu L. H., Li Z., Chen S. H., Dai S. Y., Adv. Funct. Mater., 2015, 25, 5946-5953 |
[17] | Han L., Koide N., Chiba Y., Islam A., Mitate T., CR. Chim., 2006, 9, 645-651 |
[18] | Schlichthörl G., Huang S. Y., Sprague J., Frank A. J., Chem. J. Chinese Universities,2010, 31, 8141-8155 |
[19] | Duffy N. W., Peter L. M., Rajapakse R. M. G., Wijayantha K. G. U., Electrochem. Commun., 2000, 2, 658-662 |
[20] | Hu L. S., Fong C. C., Zhang X., Chan L. L., Lam P. K. S., Chu P. K., Wong K. Y., Yang M. S., Environ. Sci. Technol., 2016, 50, 4430-4438 |
[21] | Yu W. J., Sun W., Liu Y., Mehnane H. F., Liu H., Zhang K., Cai B., Liu W., Guo S., Zhao X. Z., Chem. J. Chinese Universities,2010, 31, 705-711 |
[22] | Zhu J. L., Xia X. F., Zhu S. S., Liu X., Li H. X., Chem. J. Chinese Universities,2010, 31(10), 1833-1839 |
(朱洁莲, 夏晓峰, 朱珊珊, 刘湘, 李和兴. 高等学校化学学报, 2016, 37(10), 1833-1839) | |
[23] | Kang S. H., Kim J., Sung Y., Chem. J. Chinese Universities,2010, 31, 5242-5250 |
[24] | Yuan X., Gao B. F., Wan J. F., Lin B. Z., Chen Y. L., Chem. J. Chinese Universities,2010, 31(2), 355-360 |
(袁霞, 高碧芬, 万建风, 林碧洲, 陈亦琳. 高等学校化学学报, 2015, 36(2), 355-360) | |
[25] | Shinde P. S., Choi S. H., Kim Y., Ryu J., Jang J. S., Phys. Chem. Chem. Phys., 2016, 18(4), 2495-2509 |
[26] | Kou D. X., Liu W. Q., Hu L. H., Dai S. Y., Chem. J. Chinese Universities,2010, 31, 197-202 |
[27] | Anta J. A., Casanueva F., Oskam G., Chem. J. Chinese Universities,2010, 31, 5372-5378 |
[28] | Wang Q., Ito S., Gratzel M., Fabregatsantiago F., Morasero I., Bisquert J., Bessho T., Imai H., Chem. J. Chinese Universities,2010, 31, 25210-25221 |
[29] | Li Q. H., Tang J. W., Du. N., Qin Y. C., Xiao J., He B. L., Chen H. Y., Chu L., Chem. J. Chinese Universities,2010, 31, 816-821 |
[30] | Kou D. X., Liu W. Q., Hu L. H., Huang Y., Dai S. Y., Jiang N. Q., Acta Phys. Sin., 2010, 59, 5857-5862 |
(寇东星, 刘伟庆, 胡林华, 黄阳, 戴松元, 姜年权. 物理学报, 2010, 59, 5857-5862) | |
[31] | Liu W. Q., Hu L. H., Dai S. Y., Guo L., Jiang N., Kou D. X., Chem. J. Chinese Universities,2010, 31, 2338-2343 |
[32] | Ding Y., Ma Y. M., Tao L., Hu L. H., Li G., Jiang L., Li Z. Q., Mo L. E., Yao J., Dai S. Y., RSC Adv., 2015, 5, 17493-17500 |
[1] | SU Yingli, REN Haisheng, LI Xiangyuan. Application of New Nonequilibrium Solvation Theory in Electronic Spectra of Organic Dyes [J]. Chem. J. Chinese Universities, 2021, 42(7): 2254. |
[2] | YUE Shengli, WU Guangbao, LI Xing, LI Kang, HUANG Gaosheng, TANG Yi, ZHOU Huiqiong. Research Progress of Quasi-two-dimensional Perovskite Solar Cells [J]. Chem. J. Chinese Universities, 2021, 42(6): 1648. |
[3] | LIN Shenghuang, FU Nianqing, BAO Qiaoliang. Recent Advances in the Applications of Elemental Two-dimensional Materials and Their Derivatives Serving as Transport Layers in Solar Cells [J]. Chem. J. Chinese Universities, 2021, 42(2): 412. |
[4] | LIU Tianshuo, LONG Shichuan, YAO Zhiyi, SHI Jia, YANG Yang, HONG Wenjing. Progress of Charge Transport Through Self-assembled Monolayers by Employing Eutectic Gallium-Indium Technique [J]. Chem. J. Chinese Universities, 2020, 41(12): 2629. |
[5] | JIANG Yefang, DONG Ru, CAI Xuediao, FENG Jiangshan, LIU Zhike, LIU Shengzhong. Effect of Amphiphilic Quaternary Ammonium Salt Additive on Performance and Stability of Perovskite Solar Cells [J]. Chem. J. Chinese Universities, 2019, 40(8): 1697. |
[6] | QI Juanjuan,DONG Chao,Getinet Y. Ashebir,CHEN Junwei,WAN Zhiyang,CHEN Wangwei,ZHAO Qiuyuan,WANG Mingtai. Effects of Annealing Atmosphere on Composition, Structure and Photovoltaic Properties of Solution-processed Sb2S3 Thin Films† [J]. Chem. J. Chinese Universities, 2019, 40(2): 342. |
[7] | HAN Bin,YU Xi,HU Wenping. Study on the Mechanism of Charge Tunneling and Hopping Transport in Ferrocene Self-Assembled Molecular Junctions† [J]. Chem. J. Chinese Universities, 2019, 40(2): 298. |
[8] | CHENG Yingying,LIU Haiying,TIAN Yigeng,LIU Zhongqi,LI Qingxin. Theoretical Study on Enhancement Effect of Amino Modification of Adenine on Conductivity of DNA† [J]. Chem. J. Chinese Universities, 2019, 40(2): 279. |
[9] | LIU Guozhen, YE Jiajiu, HOU Zhaosheng, CHEN Shuanghong, HU Linhua, PAN Xu, DAI Songyuan. Influence of Crack-defect on Perovskite Solar Cells Performance† [J]. Chem. J. Chinese Universities, 2018, 39(3): 545. |
[10] | LI Hongai, SONG Chunpeng, QU Yi, ZHANG Jidong. Transform of Work Function of Poor-solvent Induced Active Layer Surface in All-polymer Solar Cells† [J]. Chem. J. Chinese Universities, 2018, 39(2): 263. |
[11] | FAN Jianxun, JI Lifei, REN Aimin. Theoretical Study on Charge Transport Properties of Copolymers of Diketopyrrolopyrrole and Oligo-thiophene† [J]. Chem. J. Chinese Universities, 2017, 38(11): 2053. |
[12] | REN Siyao, ZHOU Xueqin, LIU Dongzhi, JIANG Kejian, LI Wei, WANG Lichang, WANG Tianyang. Effect of Aspect Ratio of the Dye Molecule on the Properties of Dye Sensitized Solar Cells† [J]. Chem. J. Chinese Universities, 2016, 37(9): 1669. |
[13] | GU Dongmei, ZHANG Jianzhao, ZHANG Ji, LI Haibin, GENG Yun, SU Zhongmin. Different Electron-withdrawing Groups in π Spacers Effect on the Performance of Dye-sensitized Solar Cells Based on Triphenylamine-cyanoacrylic Acid Dyes† [J]. Chem. J. Chinese Universities, 2015, 36(7): 1344. |
[14] | QIAN Liu, DING Liming. Perovskite Solar Cells: Work Mechanism and Major Factors Affecting Their Performances† [J]. Chem. J. Chinese Universities, 2015, 36(4): 595. |
[15] | SUN Shuheng, WU Ying, ZHOU Weilong, CHEN Youchun, LI Fenghong. Fabrication and Performance of Organic Optoelectronic Devices with Alkali Metal Salts as a Cathode Interlayer† [J]. Chem. J. Chinese Universities, 2015, 36(2): 349. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||