Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (7): 20240024.doi: 10.7503/cjcu20240024
• Organic Chemistry • Previous Articles Next Articles
LIU Hao1, LIU Dongmei2, SUN Haotian1, XIA Chao2, SU Xianbin2()
Received:
2024-01-15
Online:
2024-07-10
Published:
2024-03-20
Contact:
SU Xianbin
E-mail:davidsu@njtech.edu.cn
Supported by:
CLC Number:
TrendMD:
LIU Hao, LIU Dongmei, SUN Haotian, XIA Chao, SU Xianbin. Continuous Flow Liquid-phase Vialox Peptide Synthesis Using Hydrophobic Silyl Tag[J]. Chem. J. Chinese Universities, 2024, 45(7): 20240024.
Compd. | 1H NMR, δ | 13C NMR, δ | ESI⁃MS, m/z |
---|---|---|---|
1 | 7.70(dd, J=8.0, 1.4 Hz, 8H), 7.53(d, J=8.7 Hz, 4H), 7.39(dt, J=25.0, 7.1 Hz, 12H), 6.77(d, J=8.7 Hz, 4H), 1.10(s, 18H) | 194.67, 159.28, 135.45, 132.27, 131.97, 131.04, 130.16, 127.95, 119.35, 26.46, 19.50. | 691.1985[M+H]+ |
2 | 11.02(s, 1H), 7.71—7.63(m, 8H), 7.51—7.38(m, 12H), 7.04(dd, J=17.9, 8.7 Hz, 4H), 6.72(dd, J=29.7, 8.7 Hz, 4H), 1.04(d, J=8.4 Hz, 18H) | 156.01, 155.32, 154.53, 135.52, 135.47, 132.44, 132.35, 130.91, 130.71, 128.77, 128.54, 128.51, 126.84, 119.56, 119.37, 26.77, 26.74, 19.43, 19.40 | 706.2079[M+H]+ |
3 | 7.69(dd, J=7.9, 1.3 Hz, 8H), 7.36(dt, J=24.3, 7.1 Hz, 12H), 6.97(d, J=8.5 Hz, 4H), 6.66(d, J=8.6 Hz, 4H), 4.93(s, 1H), 1.66(s, 2H), 1.08(s, 18H) | 154.38, 138.34, 135.57, 133.02, 129.88, 127.77, 119.47, 58.46, 26.57, 19.49 | 675.3272[M-NH2] |
4 | 7.68(d, J=7.6 Hz, 8H), 7.47—7.19(m, 17H), 6.78(d, J=8.4 Hz, 4H), 6.64(t, J=8.6 Hz, 4H), 5.94(d, J=8.2 Hz, 1H), 5.30(d, J=6.5 Hz, 1H), 4.98(s, 2H), 4.21(s, 1H), 1.31(d, J=7.0 Hz, 3H), 1.08(s, 18H) | 170.88, 155.99, 154.83, 136.11, 135.53, 133.85, 132.84, 129.93, 128.57, 128.24, 128.17, 128.08, 127.78, 119.67, 67.03, 55.65, 50.48, 26.53, 19.46, 18.50, 14.24 | 468.1925[M+H+K]2+ |
Compd. | 1H NMR, δ | 13C NMR, δ | ESI⁃MS, m/z |
5 | 7.75(d, J=8.9 Hz, 1H), 7.73—7.64(m, 8H), 7.37(dt, J=14.9, 7.2 Hz, 12H), 6.85(dd, J=8.5, 5.1 Hz, 4H), 6.66(d, J=8.6 Hz, 4H), 5.98(d, J=8.8 Hz, 1H), 3.47(q, J=6.9 Hz, 1H), 1.54(s, 2H), 1.29(d, J=7.0 Hz, 3H), 1.08(s, 18H) | 174.41, 154.73, 154.68, 135.56, 134.53, 134.49, 132.86, 129.94, 128.32, 128.15, 127.81, 119.59, 54.84, 50.77, 26.53, 21.78, 19.48 | 785.3571[M+Na]+ |
6 | 7.77—7.57(m, 8H), 7.46—7.11(m, 18H), 6.88—6.76(m, 4H), 6.63(dd, J=16.5, 8.2 Hz, 4H), 5.96(dd, J=20.7, 8.3 Hz, 1H), 4.96(dd, J=45.6, 12.4 Hz, 2H), 4.48—4.29(m, 1H), 4.20—4.01(m, 1H), 3.55—3.33(m, 2H), 2.07—1.65(m, 5H), 1.36—1.20(m, 3H), 1.10(dd, J=26.8, 6.3 Hz, 18H) | 1.86, 170.79, 155.93, 154.70, 136.27, 135.55, 135.52, 134.37, 134.08, 132.84, 129.91, 128.55, 128.24, 128.03, 127.79, 119.60, 119.49, 67.43, 60.76, 60.50, 55.52, 49.08, 47.10, 29.17, 26.53, 24.58, 19.47, 19.46, 17.49, 14.26 | 1016.4466[M+Na]+ |
7 | 8.13(d, J=7.9 Hz, 1H), 7.75—7.61(m, 8H), 7.50(d, J=8.6 Hz, 1H), 7.36(dtd, J=9.2, 6.8, 1.7 Hz, 12H), 6.84(dd, J=16.1, 8.6 Hz, 4H), 6.63(dd, J=13.9, 8.6 Hz, 4H), 5.96(d, J=8.5 Hz, 1H), 4.47(p, J=7.0 Hz, 1H), 3.50(dd, J=9.1, 5.3 Hz, 1H), 2.87(dtd, J=12.4, 10.2, 6.5 Hz, 2H), 1.96(ddd, J=16.4, 12.9, 7.6 Hz, 1H), 1.74(td, J=12.4, 6.6 Hz, 1H), 1.65—1.54(m, 2H), 1.28(d, J=6.9 Hz, 3H), 1.07(d, J=3.5 Hz, 18H) | 5.16, 171.07, 154.70, 154.64, 135.55, 134.34, 132.87, 129.94, 128.31, 128.25, 127.81, 119.60, 119.48, 60.09, 55.48, 48.47, 47.15, 30.62, 26.54, 26.05, 19.49, 19.47, 17.86 | 882.4098[M+Na]+ |
8 | 7.66(d, J=6.1 Hz, 8H), 7.31(dt, J=24.6, 9.7 Hz, 17H), 6.77(d, J=8.1 Hz, 4H), 6.61(t, J=8.0 Hz, 4H), 6.35(s, 1H), 6.02(s, 1H), 5.88(d, J=8.0 Hz, 1H), 5.09—4.89(m, 2H), 4.61(d, J=45.9 Hz, 2H), 4.34(d, J=26.8 Hz, 2H), 4.00—3.73(m, 2H), 3.54(d, J=42.7 Hz, 3H), 3.21(d, J=58.7 Hz, 3H), 2.87(d, J=27.8 Hz, 3H), 2.70(s, 2H), 2.51(d, J=26.0 Hz, 6H), 2.04(d, J=15.3 Hz, 4H), 1.81(dd, J=39.2, 32.5 Hz, 6H), 1.40(d, J=17.8 Hz, 8H), 1.27(d, J=11.1 Hz, 8H), 1.07(s, 18H) | 171.99, 171.12, 170.88, 158.61, 156.79, 156.49, 154.81, 154.77, 139.34, 138.37, 136.27, 135.51, 134.00, 133.92, 132.75, 132.26, 129.98, 128.57, 128.27, 128.16, 127.82, 124.55, 119.63, 119.54, 117.43, 114.17, 86.35, 67.03, 60.17, 60.03, 55.60, 49.00, 47.52, 46.52, 43.25, 36.59, 33.90, 31.98, 31.72, 31.57, 31.50, 30.17, 29.76, 29.57, 29.43, 29.22, 28.99, 28.86, 28.66, 26.52, 25.00, 24.84, 22.76, 19.46, 19.41, 18.07, 17.72, 14.23, 12.58 | 798.3596[M+H+K]2+ |
9 | 7.66(d, J=5.8 Hz, 8H), 7.34(dd, J=15.8, 6.2 Hz, 12H), 6.79(d, J=7.3 Hz, 4H), 6.65—6.58(m, 4H), 5.89(d, J=7.9 Hz, 1H), 4.78—4.20(m, 4H), 3.72—3.40(m, 11H), 3.33(s, 5H), 3.15(s, 2H), 2.92(s, 3H), 2.51(d, J=28.5 Hz, 7H), 2.06(s, 4H), 1.74(dd, J=58.6, 36.0 Hz, 8H), 1.43(s, 8H), 1.07(s, 18H) | 172.09, 171.35, 158.60, 156.57, 154.76, 154.72, 138.27, 135.50, 134.09, 133.98, 132.76, 132.18, 129.96, 128.28, 127.80, 124.56, 119.58, 119.52, 117.43, 86.38, 60.38, 60.00, 55.52, 50.29, 49.12, 47.53, 46.50, 43.24, 28.65, 26.52, 24.97, 19.45, 19.39, 18.05, 17.50, 12.58 | 1444.6672[M+Na]+ |
10 | 9.01—7.83(m, 4H), 7.69—7.16(m, 4H), 7.00(s, 1H), 4.69—4.05(m, 3H), 4.00—2.71(m, 9H), 2.51(s, 1H), 2.45—1.27(m, 11H), 1.22—0.85(m, 4H) | 174.99, 171.62, 170.49, 164.97, 157.35, 60.12, 59.76, 53.55, 50.75, 49.17, 48.60, 47.28, 29.84, 29.45, 27.24, 24.96, 24.60, 18.42 | 496.3113[M+H]+ |
Table 1 1H NMR, 13C NMR and ESI-MS data for compounds 1—10
Compd. | 1H NMR, δ | 13C NMR, δ | ESI⁃MS, m/z |
---|---|---|---|
1 | 7.70(dd, J=8.0, 1.4 Hz, 8H), 7.53(d, J=8.7 Hz, 4H), 7.39(dt, J=25.0, 7.1 Hz, 12H), 6.77(d, J=8.7 Hz, 4H), 1.10(s, 18H) | 194.67, 159.28, 135.45, 132.27, 131.97, 131.04, 130.16, 127.95, 119.35, 26.46, 19.50. | 691.1985[M+H]+ |
2 | 11.02(s, 1H), 7.71—7.63(m, 8H), 7.51—7.38(m, 12H), 7.04(dd, J=17.9, 8.7 Hz, 4H), 6.72(dd, J=29.7, 8.7 Hz, 4H), 1.04(d, J=8.4 Hz, 18H) | 156.01, 155.32, 154.53, 135.52, 135.47, 132.44, 132.35, 130.91, 130.71, 128.77, 128.54, 128.51, 126.84, 119.56, 119.37, 26.77, 26.74, 19.43, 19.40 | 706.2079[M+H]+ |
3 | 7.69(dd, J=7.9, 1.3 Hz, 8H), 7.36(dt, J=24.3, 7.1 Hz, 12H), 6.97(d, J=8.5 Hz, 4H), 6.66(d, J=8.6 Hz, 4H), 4.93(s, 1H), 1.66(s, 2H), 1.08(s, 18H) | 154.38, 138.34, 135.57, 133.02, 129.88, 127.77, 119.47, 58.46, 26.57, 19.49 | 675.3272[M-NH2] |
4 | 7.68(d, J=7.6 Hz, 8H), 7.47—7.19(m, 17H), 6.78(d, J=8.4 Hz, 4H), 6.64(t, J=8.6 Hz, 4H), 5.94(d, J=8.2 Hz, 1H), 5.30(d, J=6.5 Hz, 1H), 4.98(s, 2H), 4.21(s, 1H), 1.31(d, J=7.0 Hz, 3H), 1.08(s, 18H) | 170.88, 155.99, 154.83, 136.11, 135.53, 133.85, 132.84, 129.93, 128.57, 128.24, 128.17, 128.08, 127.78, 119.67, 67.03, 55.65, 50.48, 26.53, 19.46, 18.50, 14.24 | 468.1925[M+H+K]2+ |
Compd. | 1H NMR, δ | 13C NMR, δ | ESI⁃MS, m/z |
5 | 7.75(d, J=8.9 Hz, 1H), 7.73—7.64(m, 8H), 7.37(dt, J=14.9, 7.2 Hz, 12H), 6.85(dd, J=8.5, 5.1 Hz, 4H), 6.66(d, J=8.6 Hz, 4H), 5.98(d, J=8.8 Hz, 1H), 3.47(q, J=6.9 Hz, 1H), 1.54(s, 2H), 1.29(d, J=7.0 Hz, 3H), 1.08(s, 18H) | 174.41, 154.73, 154.68, 135.56, 134.53, 134.49, 132.86, 129.94, 128.32, 128.15, 127.81, 119.59, 54.84, 50.77, 26.53, 21.78, 19.48 | 785.3571[M+Na]+ |
6 | 7.77—7.57(m, 8H), 7.46—7.11(m, 18H), 6.88—6.76(m, 4H), 6.63(dd, J=16.5, 8.2 Hz, 4H), 5.96(dd, J=20.7, 8.3 Hz, 1H), 4.96(dd, J=45.6, 12.4 Hz, 2H), 4.48—4.29(m, 1H), 4.20—4.01(m, 1H), 3.55—3.33(m, 2H), 2.07—1.65(m, 5H), 1.36—1.20(m, 3H), 1.10(dd, J=26.8, 6.3 Hz, 18H) | 1.86, 170.79, 155.93, 154.70, 136.27, 135.55, 135.52, 134.37, 134.08, 132.84, 129.91, 128.55, 128.24, 128.03, 127.79, 119.60, 119.49, 67.43, 60.76, 60.50, 55.52, 49.08, 47.10, 29.17, 26.53, 24.58, 19.47, 19.46, 17.49, 14.26 | 1016.4466[M+Na]+ |
7 | 8.13(d, J=7.9 Hz, 1H), 7.75—7.61(m, 8H), 7.50(d, J=8.6 Hz, 1H), 7.36(dtd, J=9.2, 6.8, 1.7 Hz, 12H), 6.84(dd, J=16.1, 8.6 Hz, 4H), 6.63(dd, J=13.9, 8.6 Hz, 4H), 5.96(d, J=8.5 Hz, 1H), 4.47(p, J=7.0 Hz, 1H), 3.50(dd, J=9.1, 5.3 Hz, 1H), 2.87(dtd, J=12.4, 10.2, 6.5 Hz, 2H), 1.96(ddd, J=16.4, 12.9, 7.6 Hz, 1H), 1.74(td, J=12.4, 6.6 Hz, 1H), 1.65—1.54(m, 2H), 1.28(d, J=6.9 Hz, 3H), 1.07(d, J=3.5 Hz, 18H) | 5.16, 171.07, 154.70, 154.64, 135.55, 134.34, 132.87, 129.94, 128.31, 128.25, 127.81, 119.60, 119.48, 60.09, 55.48, 48.47, 47.15, 30.62, 26.54, 26.05, 19.49, 19.47, 17.86 | 882.4098[M+Na]+ |
8 | 7.66(d, J=6.1 Hz, 8H), 7.31(dt, J=24.6, 9.7 Hz, 17H), 6.77(d, J=8.1 Hz, 4H), 6.61(t, J=8.0 Hz, 4H), 6.35(s, 1H), 6.02(s, 1H), 5.88(d, J=8.0 Hz, 1H), 5.09—4.89(m, 2H), 4.61(d, J=45.9 Hz, 2H), 4.34(d, J=26.8 Hz, 2H), 4.00—3.73(m, 2H), 3.54(d, J=42.7 Hz, 3H), 3.21(d, J=58.7 Hz, 3H), 2.87(d, J=27.8 Hz, 3H), 2.70(s, 2H), 2.51(d, J=26.0 Hz, 6H), 2.04(d, J=15.3 Hz, 4H), 1.81(dd, J=39.2, 32.5 Hz, 6H), 1.40(d, J=17.8 Hz, 8H), 1.27(d, J=11.1 Hz, 8H), 1.07(s, 18H) | 171.99, 171.12, 170.88, 158.61, 156.79, 156.49, 154.81, 154.77, 139.34, 138.37, 136.27, 135.51, 134.00, 133.92, 132.75, 132.26, 129.98, 128.57, 128.27, 128.16, 127.82, 124.55, 119.63, 119.54, 117.43, 114.17, 86.35, 67.03, 60.17, 60.03, 55.60, 49.00, 47.52, 46.52, 43.25, 36.59, 33.90, 31.98, 31.72, 31.57, 31.50, 30.17, 29.76, 29.57, 29.43, 29.22, 28.99, 28.86, 28.66, 26.52, 25.00, 24.84, 22.76, 19.46, 19.41, 18.07, 17.72, 14.23, 12.58 | 798.3596[M+H+K]2+ |
9 | 7.66(d, J=5.8 Hz, 8H), 7.34(dd, J=15.8, 6.2 Hz, 12H), 6.79(d, J=7.3 Hz, 4H), 6.65—6.58(m, 4H), 5.89(d, J=7.9 Hz, 1H), 4.78—4.20(m, 4H), 3.72—3.40(m, 11H), 3.33(s, 5H), 3.15(s, 2H), 2.92(s, 3H), 2.51(d, J=28.5 Hz, 7H), 2.06(s, 4H), 1.74(dd, J=58.6, 36.0 Hz, 8H), 1.43(s, 8H), 1.07(s, 18H) | 172.09, 171.35, 158.60, 156.57, 154.76, 154.72, 138.27, 135.50, 134.09, 133.98, 132.76, 132.18, 129.96, 128.28, 127.80, 124.56, 119.58, 119.52, 117.43, 86.38, 60.38, 60.00, 55.52, 50.29, 49.12, 47.53, 46.50, 43.24, 28.65, 26.52, 24.97, 19.45, 19.39, 18.05, 17.50, 12.58 | 1444.6672[M+Na]+ |
10 | 9.01—7.83(m, 4H), 7.69—7.16(m, 4H), 7.00(s, 1H), 4.69—4.05(m, 3H), 4.00—2.71(m, 9H), 2.51(s, 1H), 2.45—1.27(m, 11H), 1.22—0.85(m, 4H) | 174.99, 171.62, 170.49, 164.97, 157.35, 60.12, 59.76, 53.55, 50.75, 49.17, 48.60, 47.28, 29.84, 29.45, 27.24, 24.96, 24.60, 18.42 | 496.3113[M+H]+ |
Entry | Solvent | Flow rate, x/(mL·min-1) | Reaction time a /s | Conversion b (%) | Yield c (%) |
---|---|---|---|---|---|
1 | EA | 2.0 | 45.0 | >99 | 97 |
2 | EA | 6.0 | 15.0 | >99 | 96 |
3 | EA | 10.0 | 9.0 | >99 | 96 |
4 | DCM | 10.0 | 9.0 | 84 | 80 |
5 | THF | 10.0 | 9.0 | 27 | 22 |
Table 2 Optimization of continuous flow coupling conditions
Entry | Solvent | Flow rate, x/(mL·min-1) | Reaction time a /s | Conversion b (%) | Yield c (%) |
---|---|---|---|---|---|
1 | EA | 2.0 | 45.0 | >99 | 97 |
2 | EA | 6.0 | 15.0 | >99 | 96 |
3 | EA | 10.0 | 9.0 | >99 | 96 |
4 | DCM | 10.0 | 9.0 | 84 | 80 |
5 | THF | 10.0 | 9.0 | 27 | 22 |
Material | External dimension/mm | Volume/mL | Maximum pressure/MPa | Suitable temperature/℃ |
---|---|---|---|---|
Silicon glass | 152.4×152.4×11.0 | 3.0 | 2.0 | -25—200 |
Table 3 Detailed parameters of microchannel reactor
Material | External dimension/mm | Volume/mL | Maximum pressure/MPa | Suitable temperature/℃ |
---|---|---|---|---|
Silicon glass | 152.4×152.4×11.0 | 3.0 | 2.0 | -25—200 |
Entry | Flow rate, x/(mL/min) | Pressure/Mpa | Reaction time a /s | Conversion b (%) | Yield c (%) |
---|---|---|---|---|---|
1 | 2.0 | 0.5 | 235.5 | 81 | 78 |
2 | 6.0 | 0.5 | 78.5 | 73 | 67 |
3 | 10.0 | 0.5 | 47.1 | 48 | 43 |
4 | 10.0 | 0.3 | 47.1 | 37 | 30 |
5 | 6.0 | 1.0 | 78.5 | >99 | 95 |
6 | 10.0 | 1.0 | 47.1 | >99 | 96 |
Table 4 Optimization of continuous flow of Cbz-deprotection conditions
Entry | Flow rate, x/(mL/min) | Pressure/Mpa | Reaction time a /s | Conversion b (%) | Yield c (%) |
---|---|---|---|---|---|
1 | 2.0 | 0.5 | 235.5 | 81 | 78 |
2 | 6.0 | 0.5 | 78.5 | 73 | 67 |
3 | 10.0 | 0.5 | 47.1 | 48 | 43 |
4 | 10.0 | 0.3 | 47.1 | 37 | 30 |
5 | 6.0 | 1.0 | 78.5 | >99 | 95 |
6 | 10.0 | 1.0 | 47.1 | >99 | 96 |
Material | External dimension/mm | Volume/mL | Filling material |
---|---|---|---|
Stainless steel | 100.0×10.0 | 7.85 | 5% Pd/C catalyst, 3 g |
Table 5 Detailed parameters of packed-bed reactor
Material | External dimension/mm | Volume/mL | Filling material |
---|---|---|---|
Stainless steel | 100.0×10.0 | 7.85 | 5% Pd/C catalyst, 3 g |
Synthesis method | Time/min | Purity(%) | Yield(%) |
---|---|---|---|
SPPS | 360 | 93 | 92 |
Continuous flow LPPS | 25 | 95 | 90 |
Table 6 Comparison of synthesis time, purity and yield of Vialox peptide
Synthesis method | Time/min | Purity(%) | Yield(%) |
---|---|---|---|
SPPS | 360 | 93 | 92 |
Continuous flow LPPS | 25 | 95 | 90 |
1 | Muttenthaler M., King G. E., Adams D. J., Alewood P. F., Nat. Rev. Drug Discov., 2021, 20(4), 309—325 |
2 | Drucker D. J., Nat. Rev. Drug Discov., 2020, 19(4), 277—289 |
3 | Finking R., Marahiel M. A., Annu. Rev. Microbiol., 2004, 58, 453—488 |
4 | Kawamata Y., Vantourout J. C., Hickey D. P., Bai P., Chen L. R., Hou Q. L., Qiao W. H., Barman K., Edwards M. A., Garrido⁃Castro A. F., deGruyter J. N., Nakamura H., Knouse K., Qin C. G., Clay K. J., Bao D. H., Li C., Starr J. T., Garcia⁃Irizarry C., Sach N., White H. S., Neurock M., Minteer S. D., Baran P. S., J. Am. Chem. Soc., 2019, 141(15), 6392—6402 |
5 | Merrifield R. B., J. Am. Chem. Soc., 1963, 85(14), 2149—2154 |
6 | Vigneaud V. D., Ressler C., Swan C. J. M., Roberts C. W., Katsoyannis P. G., Gordon S., J. Am. Chem. Soc., 1953, 75(19), 4879—4880 |
7 | Zompra A. A., Galanis A. S., Werbitzky O., Albericio F., Future Med. Chem., 2009, 1(2), 361—377 |
8 | Sharma A., Kumar A., de la Torre B. G., Albericio F., Chem. Rev., 2022, 122(16), 13516—13546 |
9 | Pillai V. N. R., Mutter M., Bayer E., Gatfield I., J. Org. Chem., 1980, 45(26), 5364—5370 |
10 | Okada Y., Suzuki H., Nakae T., Fujita S., Abe H., Nagano K., Yamada T., Ebata N., Kim S., Chiba K., J. Org. Chem., 2013, 78(2), 320—327 |
11 | Fujita Y., Fujita S., Okada Y., Chiba K., Org. Lett., 2013, 15(6), 1155—1157 |
12 | Aihara K., Komiya C., Shigenaga A., Inokuma T., Takahashi D., Otaka A., Org. Lett., 2015, 17(3), 696—699 |
13 | Takahashi D., Inomata T., Fukui T., Angew. Chem. Int. Ed., 2017, 56(27), 7803—7807 |
14 | Kaur P., Wever W., Pindi S., Milles R., Gu P., Shi M., Li G. G., Green Chem., 2011, 13(5), 1288—1292 |
15 | Wu J. B., An G. H., Lin S. Q., Xie J. B., Zhou W., Sun H., Pan Y., Li G. G., Chem. Commun., 2014, 50(10), 1259—1261 |
16 | An G. H., Seifert C., Li G. G., Org. Biomol. Chem., 2015, 13(6), 1600—1617 |
17 | Li H. D., Chao J., Hasan J., Tian G., Jin Y. T., Zhang Z. X., Qin C. G., J. Org. Chem., 2020, 85(10), 6271—6280 |
18 | Li H. D., Chao J., Tian G., Hasan J., Jin Y. T., Zhang Z. X., Qin C. G., Org. Chem. Front., 2020, 7(4), 689—696 |
19 | Li H. D., Chao J., Zhang Z. X., Tian G., Li J., Chang N. H., Qin C. G., Org. Lett., 2020, 22(9), 3323—3328 |
20 | Wu A., Ramakrishna I., Hattori T., Yamamoto H., Org. Biomol. Chem., 2022, 20(44), 8685—8692 |
21 | Guidi M., Seeberger P. H., Gilmore K., Chem. Soc. Rev., 2020, 49(24), 8910—8932 |
22 | Movsisyan M., Delbeke E. I. P., Berton J. K. E. T., Battilocchio C., Ley S. V., Stevens C. V., Chem. Soc. Rev., 2016, 45(18), 4892—4928 |
23 | Fuse S., Mifune Y., Nakamura H., Tanaka H., Nat. Commun., 2016, 7(1), 13491—13497 |
24 | Hartrampf N., Saebi A., Poskus M., Gates Z. P., Callahan A. J., Cowfer A. E., Hanna S., Antilla S., Schissel C. K., Quartararo A. J., Ye X., Mijalis A. J., Simon M. D., Loas A., Liu S., Jessen C., Nielsen T. E., Pentelute B. L., Science, 2020, 368(6494), 980—987 |
25 | Otake Y., Adachi K., Yamashita Y., Iwanaga N., Sunakawa H., Shamoto T., Ogawa J. I., Ito A., Kobayashi Y., Masuya K., Fuse S., Kuboa D., Itoha H., React. Chem. Eng., 2023, 8(4), 863—870 |
26 | Fickenscher K., Aab A., Stüber W., Thromb. Haemostasis, 1991, 65(5), 535—540 |
27 | Erythropel H. C., Zimmerman J. B., de Winter T. M., Petitjean L., Melnikov F., Lam C. H., Lounsbury A. W., Mellor K. E., Janković N. Z., Tu Q. S., Pincus L. N., Falinski M. M., Shi W. B., Coish P., Plata D. L., Anastas P. T., Green Chem., 2018, 20(9), 1929—1961 |
28 | Sabatini M. T., Boulton L. T., Sneddon H. F., Sheppard T. D., Nat. Catal., 2019, 2(1), 10—17 |
[1] | YANG Qi, LI Weiqiang, HUANG Shuntao, LI Jingpeng, LIU Teng, HUANG Chao. Continuous Flow Synthesis of Structurally Symmetrical N-aryl 4-Pyridinones via a Multicomponent Tandem Reaction [J]. Chem. J. Chinese Universities, 2023, 44(6): 20220671. |
[2] | HUANG Yan-Zhen, FANG Qun, LI Dan-Ni. An Integrated Continuous Flow Analysis System Based on Microfluidic Chip with High Throughput Sample Introduction Interface and Gravity-driven Flows [J]. Chem. J. Chinese Universities, 2004, 25(S1): 143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||