 
	 
	Chem. J. Chinese Universities ›› 2017, Vol. 38 ›› Issue (3): 471.doi: 10.7503/cjcu20160573
• Physical Chemistry • Previous Articles Next Articles
					
													ZHANG Chunlei1, HUANG Danya1, SUN Minghui1, OUYANG Yiting1, WANG Chao1, LI Xiaoyun2, CHEN Lihua1,*, SU Baolian1,*( )
)
												  
						
						
						
					
				
Received:2016-08-11
															
							
															
							
															
							
																											Online:2017-03-10
																								
							
																	Published:2017-02-24
															
						Contact:
								CHEN Lihua,SU Baolian   
																	E-mail:bao-lian.su@unamur.be
																					Supported by:CLC Number:
TrendMD:
ZHANG Chunlei, HUANG Danya, SUN Minghui, OUYANG Yiting, WANG Chao, LI Xiaoyun, CHEN Lihua, SU Baolian. Promoting Effect of Nonmetal Ion Doping and Hierarchically 3D Dendrimeric Architecture for Visible-light-active Mesoporous TiO2 Photocatalyst†[J]. Chem. J. Chinese Universities, 2017, 38(3): 471.
 
																													Fig.1 High magnification SEM images of the nanoribbons in MT550(A), MTN350(B) and MTC550(C) The insets are corresponding low magnification SEM images of mesoporous TiO2 with hierarchically 3D dendrimeric architecture.
| Sample | Crystalline sizea/nm | Band-gap energy/eV | ||||
|---|---|---|---|---|---|---|
| Eg1 | Eg2 | |||||
| MT350 | 13.6 | 76 | 76 | 0.20 | 3.24 | |
| MT450 | 18.2 | 44 | 44 | 0.17 | 3.23 | |
| MT550 | 27.3 | 33 | 33 | 0.14 | 3.22 | |
| MTN350 | 10.9 | 83 | 83 | 0.22 | 3.18 | 2.40 | 
| MTN450 | 16.6 | 55 | 55 | 0.16 | 3.19 | 2.41 | 
| MTN550 | 23.4 | 35 | 35 | 0.12 | 3.22 | |
| MTC350 | 10.2 | 197 | 197 | 0.25 | 3.23 | |
| MTC450 | 14.4 | 87 | 87 | 0.26 | 3.19 | |
| MTC550 | 20.5 | 64 | 64 | 0.23 | 3.17 |  | 
Table 1 Textural properties of the synthesized samples
| Sample | Crystalline sizea/nm | Band-gap energy/eV | ||||
|---|---|---|---|---|---|---|
| Eg1 | Eg2 | |||||
| MT350 | 13.6 | 76 | 76 | 0.20 | 3.24 | |
| MT450 | 18.2 | 44 | 44 | 0.17 | 3.23 | |
| MT550 | 27.3 | 33 | 33 | 0.14 | 3.22 | |
| MTN350 | 10.9 | 83 | 83 | 0.22 | 3.18 | 2.40 | 
| MTN450 | 16.6 | 55 | 55 | 0.16 | 3.19 | 2.41 | 
| MTN550 | 23.4 | 35 | 35 | 0.12 | 3.22 | |
| MTC350 | 10.2 | 197 | 197 | 0.25 | 3.23 | |
| MTC450 | 14.4 | 87 | 87 | 0.26 | 3.19 | |
| MTC550 | 20.5 | 64 | 64 | 0.23 | 3.17 |  | 
| Sample | Calcination temperature/℃ | Degradation efficiency(%) | Degradation rate, k/min-1 | ||||
|---|---|---|---|---|---|---|---|
| MT | MTN | MTC | MT | MTN | MTC | ||
| With 3D dendrimeric architecture | 350 | 89 | 91 | 93 | 0.055 | 0.058 | 0.072 | 
| 450 | 92 | 95 | 97 | 0.061 | 0.072 | 0.087 | |
| 550 | 98 | 99 | 100 | 0.120 | 0.140 | 0.190 | |
| With broken 3D dendrimeric architecture | |||||||
| 550 | 61 | 77 | 86 | 0.024 | 0.037 | 0.049 | |
Table 2 Summary of UV-Visible light photocatalytic activity of samples*
| Sample | Calcination temperature/℃ | Degradation efficiency(%) | Degradation rate, k/min-1 | ||||
|---|---|---|---|---|---|---|---|
| MT | MTN | MTC | MT | MTN | MTC | ||
| With 3D dendrimeric architecture | 350 | 89 | 91 | 93 | 0.055 | 0.058 | 0.072 | 
| 450 | 92 | 95 | 97 | 0.061 | 0.072 | 0.087 | |
| 550 | 98 | 99 | 100 | 0.120 | 0.140 | 0.190 | |
| With broken 3D dendrimeric architecture | |||||||
| 550 | 61 | 77 | 86 | 0.024 | 0.037 | 0.049 | |
| Sample | Calcination temperature/℃ | Degradation efficiency(%) | Degradation rate, k/min-1 | ||
|---|---|---|---|---|---|
| MTN | MTC | MTN | MTC | ||
| With 3D dendrimeric architecture | 350 | 100 | 84.7 | 5.45×10-2 | 1.80×10-2 | 
| 450 | 87.56 | 88.30 | 2.00×10-2 | 2.12×10-2 | |
| 550 | 86.63 | 97.60 | 1.95×10-2 | 3.24×10-2 | |
| Without 3D dendrimeric architecturea | 350 | 45.5 | 6.1×10-3 | ||
| 550 | 42.5 | 5.7×10-3 | |||
Table 3 Summary of visible light photocatalytic activity of samples*
| Sample | Calcination temperature/℃ | Degradation efficiency(%) | Degradation rate, k/min-1 | ||
|---|---|---|---|---|---|
| MTN | MTC | MTN | MTC | ||
| With 3D dendrimeric architecture | 350 | 100 | 84.7 | 5.45×10-2 | 1.80×10-2 | 
| 450 | 87.56 | 88.30 | 2.00×10-2 | 2.12×10-2 | |
| 550 | 86.63 | 97.60 | 1.95×10-2 | 3.24×10-2 | |
| Without 3D dendrimeric architecturea | 350 | 45.5 | 6.1×10-3 | ||
| 550 | 42.5 | 5.7×10-3 | |||
| [1] | Ding S., Zhu G. W., Wang R. W., Zhang Z. T., Qiu S. L., Chem. J. Chinese Universities, 2014, 35(5), 1016—1022 | 
| (丁双, 朱国巍, 王润伟, 张宗弢, 裘式纶. 高等学校化学学报, 2014, 35(5), 1016—1022) | |
| [2] | Guo H. F., Kenmell M., Heikkila M., Leskela M., J. Appl. Catal. B, 2010, 95(3), 358—364 | 
| [3] | Veréb G., Manczinger L., Bozsó G., Sienkiewicz A., Forró L., Mogyorósi K., Hernádi K., Dombi A., Applied Catalysis B: Environ., 2013, 129, 566—574 | 
| [4] | Wu M., Li Y., Deng Z., Su B. L., ChemSusChem,2011, 4, 1481—1488 | 
| [5] | Klosek S., Raftery D., J. Phys. Chem. B, 2001, 105, 2815—2819 | 
| [6] | Anpo M., Journal of Catalysis, 2003, 216, 505—516 | 
| [7] | Valentin C. D., Pacchioni G., Catalysis Today, 2013, 206(3), 12—18 | 
| [8] | Azami M. S., Ain S. K., Zaharudin R., Bakar F., Nawawi W. I., Applied Mechanics & Materials, 2016, 835, 372—377 | 
| [9] | Cao X., Liu C., Hu Y., Yang W., Chen J.,Journal of Nanomaterials, 2016, (12), 1—11 | 
| [10] | Ananpattarachai J., Seraphin S., Kajitvichyanukul P., Environmental Science & Pollution Research,2016, 23(4), 3884—3896 | 
| [11] | Dong F., Guo S., Wang H. Q., Li X. F., Wu Z. B., Eprint Arxiv, 2011, 115(27), 13285—13292 | 
| [12] | Bakar S. A., Ribeiro C., RSC Advances, 2016, 6(43), 36516—36527 | 
| [13] | Shi Q., Yang D., Jiang Z., Li J., Journal of Molecular Catalysis B: Enzymatic,2006, 43, 44—48 | 
| [14] | Zhao D., Chen C. C., Wang Y. F., Ji H. W., Ma W. H., Zang L., Zhao J. C., J. Phys. Chem. C, 2008, 112, 5993—6001 | 
| [15] | Albrbar A. | 
| [16] | Liu G., Chen Z., Dong C., Zhao Y., Li F., Lu G. Q., Cheng H. M., J. Phys. Chem. B, 2006, 110, 20823—20828 | 
| [17] | Chen Q.L., Wang Y., Zhong C. Y., Guo Y., Advanced Materials Research, 2011, 239—242, 1923—1928 | 
| [18] | Xu P., Li Y. J., Liu C., Li M., Deng R. H., Chem. J. Chinese Universities, 2014, 35(9), 1954—1961 | 
| (徐鹏, 李佑稷, 刘晨, 李铭, 邓瑞成. 高等学校化学学报, 2014, 35(9), 1954—1961) | |
| [19] | Tseng Y. H., Kuo C. S., Huang C. H., Nanotechnology,2006, 17(10), 2490—2497 | 
| [20] | Yang H. B., Rao W., Applied Mechanics & Materials, 2014, 521, 576—580 | 
| [21] | Wang C. L. X., Journal of Materials Research, 2012, 27(27), 2265—2270 | 
| [22] | Li X. Y., Chen L. H., Li Y., Rooke J. C., Deng Z., Hu Z. Y., Liu J., Krief A., Yang X. Y., Su B. L., Microporous and Mesoporous Materials, 2012, 152, 110—121 | 
| [23] | Yoshitake M., Thananan A., Aizawaki T., Yoshihara K., Surface and Interface Analysis, 2002, 34, 698—702 | 
| [24] | Leprince-Wang Y., Surf Coat Tech., 2002, 150, 257—262 | 
| [25] | Ohno T., Tsubota T., Toyofuku M., Inaba R., Catal. Lett., 2004, 98, 255—258 | 
| [26] | Chen X. B., Lou Y. B., Samia A. C. S., Burda C., Gole J. L., Adv. Funct. Mater., 2005, 15, 41—49 | 
| [27] | Park Y., Kim W., Park H., Tachikawa T., Majima T., Choi W., Applied Catalysis B: Environmental, 2009, 91, 355—361 | 
| [28] | Neville E. M., Mattle M. J., Loughrey D., J. Phys. Chem. C, 2012, 116(31), 16511—16521 | 
| [29] | Umrao S, Abraham S, Theil F, Pandey, S., Ciobota V., Shukla P. K., Rupp C J., Chakraborty S., Ahuja R., Popp J., Dietzek B., Srivastava A., Rsc Advances, 2014, 4(104), 59890—59901 | 
| [30] | Khan S. U. M., Al-Shahry M., Ingler Jr. W. B. , Science,2002, 297, 2243—2245 | 
| [31] | Miao Z., Xu D. S., Ouyang J. H., Guo G. L., Zhao X. H., Tang Y. Q., Nano Lett., 2002, 2, 717—720 | 
| [32] | Soler-Illia G. J. D. A., Louis A., Sanchez C., Chem. Mater., 2002, 14, 750—759 | 
| [33] | Xue Q. Q., He G. Z., Xia S. W., Pan G., Chem. J. Chinese Universities, 2013, 34(7), 1673—1678 | 
| (薛倩倩, 何广智, 夏树伟, 潘纲. 高等学校化学学报, 2013, 34(7), 1673—1678) | |
| [34] | Huang Y., Ho W., Lee S., Zhang L., Li G., Yu J. C., Langmuir,2008, 24, 3510—3516 | 
| (Ed.:V, Z, K) | 
| [1] | HUI Longfei,LI Jianguo,GONG Ting,SUN Daoan,LÜ Jian,HU Shenlin,FENG Hao. Fabrication of Silica and Titania Anti-coking Passivation Layers in High Aspect-ratio Tubular Reactors by Atomic Layer Deposition† [J]. Chem. J. Chinese Universities, 2019, 40(2): 201. | 
| [2] | ZHU Guilian, LIN Tianquan, HUANG Fuqiang. Black Nano Titania for Efficient Solar Energy Utilization [J]. Chem. J. Chinese Universities, 2015, 36(11): 2099. | 
| [3] | ZHANG Haipeng, PAN Qingzhi, ZOU Yongcun. Mesoporous Titania Supported Copper Hydroxide as an Efficient Heterogeneous Catalyst in Oxidative Homocoupling of Alkynes [J]. Chem. J. Chinese Universities, 2014, 35(6): 1307. | 
| [4] | ZHAO Xiao-Bing, WANG Fang, QIAN Jun-Chao. Preparation of Hierarchical Mesoporous TiO2 Nanosheet Using China Rose Petal as Template [J]. Chem. J. Chinese Universities, 2012, 33(03): 442. | 
| [5] | ZOU Yong-Cun, LU Feng-Guo, LI Guo-Dong*. Synthesis and DNA Adsorption Properties of Hierarchically Macro-mesoporous Titania Films [J]. Chem. J. Chinese Universities, 2010, 31(1): 30. | 
| [6] | NIU Zhong-Wei, LI Dan, MA Jin, YANG Zheng-Long, YANG Zhen-Zhong . Preparation and Amphiphilicity of Macroporous Titania Coating [J]. Chem. J. Chinese Universities, 2004, 25(12): 2390. | 
| [7] | WEI Yu, YU Jing, LIN Yu-Long, MA Zi-Chuan . Synthesis of Rutile TiO2 Nanowhiskers by Liquid Phase Method at Low Temperature [J]. Chem. J. Chinese Universities, 2004, 25(11): 1996. | 
| [8] | YUAN Zhi-Hao, SUN Yong-Chang, WANG Yu-Hong, BIE Li-Jian, DUAN Yue-Qin, ZHANG Li-De . Effect of ZnFe2O4 Dopant on Structural Phase Transformation and Photocatalytic Activity of TiO2 Nanopowders [J]. Chem. J. Chinese Universities, 2004, 25(10): 1875. | 
| [9] | GUO Chang-Wen, DAI Wei-Lin, CAO Yong, FAN Kang-Nian . Preparation of Core-shell Titania Spheroid with Mesoporous Structure and the Application in Synthesis of Glutaraldehyde [J]. Chem. J. Chinese Universities, 2003, 24(6): 1097. | 
| [10] | ZHANG Hai-Ping, ZHOU Ya-Lin, ZHANG Man-Hua, SHEN Tao, LI Yu-Liang, ZHU Dao-Ben . Photo-induced Intramolecular Electron Transfer of Fluorescein-anthraquinone-methyl Ester and Detection of Its Charge-separated State [J]. Chem. J. Chinese Universities, 2003, 24(3): 492. | 
| [11] | YANG Ru, LI Min, LI You-Fen, LIU Jia-Xiang, YAN Cai-Xia . Surface Texture of Nanometer Mesoporous Titania Powders [J]. Chem. J. Chinese Universities, 2003, 24(1): 146. | 
| [12] | ZHENG Shan, GAO Lian, GUO Jing-Kun . Synthesis, Structure Characterization and Photoactivities of Nanosized Pd Clusters on Titania-modified MCM-41 by Photodeposition Method [J]. Chem. J. Chinese Universities, 2002, 23(6): 1126. | 
| [13] | LI Dan-Zhen, ZHENG Yi, FU Xian-Zhi . Microwave Assisted Photocatalytic Oxidation and Its Applications [J]. Chem. J. Chinese Universities, 2002, 23(12): 2351. | 
| [14] | CHENG Ying-Zhi, ZHANG Yuan-Ming, TANG Yu, MAO Xuan, CHU Lei. Preparation and Properties of ZnO-TiO2 and WO3-TiO2 Composite Film Photocatalyst [J]. Chem. J. Chinese Universities, 2001, 22(S1): 165. | 
| [15] | ZHENG Yi, LI Dan-Zhen, FU Xian-Zhi . Microwave-assisted Heterogeneous Photocatalytic Oxidation of Ethylene [J]. Chem. J. Chinese Universities, 2001, 22(3): 443. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||