Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (9): 20250144.doi: 10.7503/cjcu20250144
• Physical Chemistry • Previous Articles Next Articles
					
													LI Dong, PU Xue, DENG Li, WU Qilin, JU Anqi(
)
												  
						
						
						
					
				
Received:2025-05-18
															
							
															
							
															
							
																											Online:2025-09-10
																								
							
																	Published:2025-06-27
															
						Contact:
								JU Anqi   
																	E-mail:anqiju@163.com
																					Supported by:CLC Number:
TrendMD:
LI Dong, PU Xue, DENG Li, WU Qilin, JU Anqi. Fabrication of ZIF-67-Derived Hollow Flower-like Ni0.3Co2.7S/MoS2 Composite Catalysts for Hydrogen Production via Water Electrolysis[J]. Chem. J. Chinese Universities, 2025, 46(9): 20250144.
| Catalyst | SBET/(m2∙g-1) | Smeso/(m2∙g-1) | Vmeso/(cm3∙g-1) | 
|---|---|---|---|
| Ni0.3Co2.7S/MoS2⁃2 | 119.120 | 89.311 | 0.241 | 
| Ni0.3Co2.7S/MoS2⁃3 | 98.952 | 71.764 | 0.125 | 
| Ni0.3Co2.7S/MoS2⁃1 | 57.484 | 21.135 | 0.043 | 
Table 1 BET specific surface area, mesoporous surface area and mesoporous volume of three composite catalysts
| Catalyst | SBET/(m2∙g-1) | Smeso/(m2∙g-1) | Vmeso/(cm3∙g-1) | 
|---|---|---|---|
| Ni0.3Co2.7S/MoS2⁃2 | 119.120 | 89.311 | 0.241 | 
| Ni0.3Co2.7S/MoS2⁃3 | 98.952 | 71.764 | 0.125 | 
| Ni0.3Co2.7S/MoS2⁃1 | 57.484 | 21.135 | 0.043 | 
| [1] | Chi L. P., Niu Z. Z., Liao J., Tang K. B., Gao M. R., Chem. J. Chinese Universities, 2023, 44(5), 20220740 | 
| 池丽萍, 牛壮壮, 廖洁, 唐凯斌, 高敏锐. 高等学校化学学报, 2023, 44(5), 20220740 | |
| [2] | Peng M., Ge Y. Z., Gao R., Yang J., Li A., Xie Z. H., Yu Q. L., Zhang J., Asakura H., Zhang H., Liu Z., Zhang Q., Deng J., Zhou J. H., Zhou W., Huchings G. J., Ma D., Science, 2025, 387(6735), 769—775 | 
| [3] | Zhang F. F., Hong S. H., Qiao R. X., Huang W. H., Tang Z., Tang J. Y., Pao C. W., Yeh M. H., Dai J., Chen Y., Lu J., Hu Z. W., Gong F., Zhu Y. L., Wang H. T., ACS Nano, 2025, 19(11), 11176—11186 | 
| [4] | Lin J. W., Wang X., Zhao Z. Y., Chen D. L., Liu R. M., Ye Z. Z., Lu B., Hou Y., Lu J. G., Carbon Energy, 2024, 6(11), 555—586 | 
| [5] | Pomerantseva E., Bonaccorso F., Feng X. L., Cui Y., Gogotsi Y., Science, 2019, 366(6468), 969—981 | 
| [6] | Yuan Y. L., Fang H. L., Chen K., Huang J. H., Chen J. X., Lu Z. W.,Wang H. B., Zhao Z. X., Chen W. X., Wen Z. H., Adv. Mater., 2025, 37(18), 2501607 | 
| [7] | Chen G. Z., Chen W., Lu R. H., Ma C. Zhang Z. D., Huang Z. Y., Weng J. N., Wang Z. Y., Han Y. H., Huang W., J. Am. Chem. Soc., 2023, 145(40), 22069—22078 | 
| [8] | Su L. X., Zhang S. K., Cui C. X., Zhou S. N., Pang H., Adv. Mater., 2025, 37(4), 2414628 | 
| [9] | Duan X., Zhang H., Chem. Rev., 2024, 124(19), 10619—10622 | 
| [10] | Shi C, Zhou J., Boda M. A., Zhao K. F., Yang Z. Q., Yuan D. W., Yi Z. G., J. Mater. Chem. A, 2025, 13(6), 4538—4549 | 
| [11] | Huang J. J., Mu L., OU Y. Y., Zhao G., Huang J. Z., Wang X., Zhang B. J., CrystEngComm, 2024, 26(33), 4478—4488 | 
| [12] | Yang Z., Chen H. B., Bei S. Y., Bao K. Y., Zhang C. Y., Xiang M., Yu C. B., Dong S., Qin H. F., Small, 2024, 20(24), 2310286 | 
| [13] | Jia Y., Zhang Y. C., Xu H. Q., Li J., Gao M., Yang X. T., ACS Catal., 2024, 14(7), 4601—4637 | 
| [14] | Chen X. Y., Yao J. S., Geng J. M., Zhou M. M., China Molybdenum Ind., 2023, 47(6), 1—9 | 
| 陈宇欣, 姚金实, 葛静敏, 周明明. 中国钼业, 2023, 47(6), 1—9 | |
| [15] | Ali Shan S., Xu L., Sayyar R., Bian T., Liu Z. Y., Yuan A. H., Shen X. P., Khan I., Tahir A. A., Ullah H., Chem. Eng. J., 2022, 428, 132126 | 
| [16] | Zhang G. G., Feng W. C., Du G. Y., Zhang Y., Yang Y., Xu D., Wang T. Y., Chen H. Y., Xue H. G., Shakouri M., Pang H., Adv. Mater., 2025, 37(26), 2503814 | 
| [17] | An B., Bian R. C., Dong J. P., Liu W. L., Su H., Li N., Gao Y. Q., Ge L., Chem. Eng. J., 2024, 485, 149903 | 
| [18] | Shi M. J., Sultanta F., Qin X. J., Zhang P., Qian K. C., Wei T., Duan Y., Li T. T., Bai J. M., Li R. H., Appl. Catal. B: Environ. Energy, 2025, 371, 125210 | 
| [19] | Su L. X., Zhang S. K., Wu H., Zhou S. N., Cui C. X., Pang H., Nano Energy, 2024, 130, 110177 | 
| [20] | Yao C., Wang Q. Q., Peng C. Y., Wang R. C., Liu J. L., Tsidaeva N., Wang W., Chem. Eng. J., 2024, 479, 147924 | 
| [21] | Lu M, Y, Zhao X., Zhang S. F., Jian H. X., Wang M., Lu T. B., Sci. China Mater., 2024, 67(6), 1882—1890 | 
| [22] | Liu W. L., Teng Z. Y., AN B., Dong J. P., Li N., Gao Y. Q., Ge L., Chem. Eng. J., 2025, 504, 158932 | 
| [23] | Li X. Y., Chen X., Li M., Wei H. R., Yang X. M., Ye S. H., Li L. W., Chen J., Ren X. Z., Ouyang X. P., Liu J. H., Meng X. T., Qiu J. S., Xiao B. W., Zhang Q. L., Hu J. T., Nano⁃Micro Lett., 2025, 17(1), 177—208 | 
| [24] | Yang C. G., Huang R., Wang D. E., Tian Z. J., Chem. Ind. Eng. Prog., 2023, 43(1), 465—472 | 
| 杨成功, 黄蓉, 王冬娥, 田志坚. 化工进展, 2023, 43(1), 465—472 | |
| [25] | Zhang T., Hang L. F., Liu Q. Y., Tao S., Bao H. M., Fan H. J., Adv. Mater., 2024, 36(36), 2405386 | 
| [26] | Yan W. Q., Xian J. L., Zhang S. N., Zhang J. R., Liu K. S., Yang J. L., Tao F., Liu R. P., Liu Q., Yang P. H., Adv. Sci., 2025, 12(26), 2502834 | 
| [27] | Li M., Li H., Fan H. F., Liu Q. F., Yan Z., Wang A. Q., Yang B., Wang E., Nat. Commun., 2024, 15(1), 6154—6163 | 
| [28] | Xu Z. Y., Chen Q., Chen Q. X., Wang P., Wang J. X., Guo C., Qiu X. Y., Han X., Hao J. H., J. Mater. Chem. A, 2022, 10(45), 24137—24146 | 
| [29] | Zhang Y. C., Yang T. R., Li J., Zhang Q., Li B. Z., Gao M., Adv. Funct. Mater., 2022, 33(3), 2210939 | 
| [30] | Jin H., Zhang Y., Cao Z. W., Liu J., Ye S., Adv. Mater., 2025, doi: 10.1002/adma.202502977 | 
| [31] | Li R. S., Miao Z. P., Li J., Tian X. L., Chem. J. Chinese Universities, 2023, 44(5), 20220730 | 
| 李瑞松, 苗政培, 李静, 田新龙. 高等学校化学学报, 2023, 44(5), 20220730 | |
| [32] | Shi Y., Zhang D., Miao H. F., Wu X. K., Wang Z. C., Zhan T. R., Lai J. P., Wang L., Sci. China Chem., 2022, 65(9), 1829—1837 | 
| [33] | Zhao L., Liang S. J., Zhang L., Huang H. L., Zhang Q. H., Ge W. Y., Ting S. W., Tan T., Huang L. B., An Q., Small, 2024, 20(40), e2401537 | 
| [1] | WANG Yitong, CAO Yuanyuan, ZHOU Lina, YE Rongrong, LI Di, LIU Xinxin, GUO Biao, ZHOU Lijing, ZHAO Zhen. Synthesis of Nitrogen-doped Porous Molybdenum Carbide Nanorods and Their Electrocatalytic Hydrogen Evolution Performance in Acidic and Alkaline Media [J]. Chem. J. Chinese Universities, 2025, 46(8): 20250095. | 
| [2] | LIU Zhaozhen, YAO Yanfang, FANG Kun, LYU Yunrui, YE Yong, LIU Haiyang. Metalloporphyrin/Multi-walled Carbon Nanotubes Composites for Electrocatalytic Hydrogen Evolution Reaction [J]. Chem. J. Chinese Universities, 2025, 46(5): 20240529. | 
| [3] | WEN Ying, CHEN Rongsheng, NI Hongwei. Ultra-fast Synthesis of Highly Dispersed Pt Nanoparticles Loaded on Carbon Nanotubes by Nanosecond Pulsed Laser for Hydrogen Evolution Reaction [J]. Chem. J. Chinese Universities, 2025, 46(3): 20240464. | 
| [4] | WANG Lu. Ionic Liquid-assisted Hydrothermal Synthesis of 1T-MoS2 and Its Zinc Ion Storage Performance [J]. Chem. J. Chinese Universities, 2024, 45(9): 20240145. | 
| [5] | CHEN Xin, LIU Jingyuan, YU Jing. Preparation of Porous Carbon Nanofiber Loaded Copper-platinum Alloy Catalysts and Their Electrocatalytic Hydrogen Evolution Performance [J]. Chem. J. Chinese Universities, 2024, 45(6): 20240042. | 
| [6] | LIU Wenhuan, WANG Kangkang, DOU Jiayang, ZHANG Tongchen, DONG Sheying. Electrodeposited NiCu Alloy Anchored Co2P Nanowires Enhancing Hydrogen Evolution Reaction by Modulating Electronic Structure [J]. Chem. J. Chinese Universities, 2024, 45(4): 20240005. | 
| [7] | YU Wenli, WANG Zixuan, DONG Bin, WU Zexing, CHAI Yongming, WANG Lei. pH-Universal Hydrogen Evolution Reaction Performance Boosted by Electronic Interaction Between Ultrafine Pt Nanoparticles and MOF Support [J]. Chem. J. Chinese Universities, 2024, 45(12): 20240408. | 
| [8] | HU Wenxin, ZHAO Ying, DU Danyang, ZHANG Hongdan, CHENG Peng. Preparation of ZSM-5 Encapsulated Pt-La Bimetallic Catalysts and Their Catalytic Performance for iso-Butane Cracking [J]. Chem. J. Chinese Universities, 2024, 45(10): 20240244. | 
| [9] | YANG Yingnan, SUN Qiming. Synthesis of EAB Zeolite and Its Application in Methanol-to-olefin Reaction [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230119. | 
| [10] | ZHAO Huanyu, MI Hongtian, CHANG Yueqi, ZHOU Dongxue, ZHANG Liguo, YANG Mu. Interfacial Engineering and Electrocatalytic Hydrogen Evolution Performance of Ni/TiO2-VO Nanowires Self-supporting Thin Films [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230057. | 
| [11] | YANG Lijun, YU Yang, ZHANG Lei. Construction of Dual-functional 2D/3D Hydrid Co2P-CeO x Heterostructure Integrated Electrode for Electrocatalytic Urea Oxidation Assisted Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220082. | 
| [12] | WANG Zumin, MENG Cheng, YU Ranbo. Doping Regulation in Transition Metal Phosphides for Hydrogen Evolution Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220544. | 
| [13] | LIANG Yu, LIU Huan, GONG Lige, WANG Chunxiao, WANG Chunmei, YU Kai, ZHOU Baibin. Synthesis and Supercapacitor Properties of Biimidazole-modified {SiW12O40} Hybrid [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210556. | 
| [14] | WU Yaqiang, LIU Siming, JIN Shunjin, YAN Yongqing, WANG Zhao, CHEN Lihua, SU Baolian. Synthesis of Zn-Doped NiCoP Catalyst with Porous Double-layer Nanoarray Structure and Its Electrocatalytic Properties for Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2021, 42(8): 2483. | 
| [15] | ZHANG Nan, HAN Kuo, LI Yue, WANG Chunru, ZHAO Feng, HAN Dongxue, NIU Li. Core-shell Heterostructure Construction Between Thiospinel CuCo2S4 and MoS2 for Improved Hydrogen Evolution Electrocatalytic Performance [J]. Chem. J. Chinese Universities, 2021, 42(4): 1307. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||