Chem. J. Chinese Universities ›› 2024, Vol. 45 ›› Issue (8): 20240157.doi: 10.7503/cjcu20240157
• Analytical Chemistry • Previous Articles Next Articles
SHAO Yibo1,2, YU Dengjie1,2, LI Yarui1,2, WEI Haoze1,2, JIN Wei1,2(), YU Bingwen1,2(
)
Received:
2024-04-01
Online:
2024-08-10
Published:
2024-05-20
Contact:
JIN Wei, YU Bingwen
E-mail:jinweimy@zju.edu.cn;yubingwen007@126.com
Supported by:
CLC Number:
TrendMD:
SHAO Yibo, YU Dengjie, LI Yarui, WEI Haoze, JIN Wei, YU Bingwen. A Parameter Standardization-based Single Sample Calibration Method and Quantitative Analysis of Cement Based on Microwave Plasma Torch[J]. Chem. J. Chinese Universities, 2024, 45(8): 20240157.
Sample | Mass fraction(%) | ||||
---|---|---|---|---|---|
Fe2O3 | MgO | Al2O3 | SiO2 | CaO | |
S1 | 3.31 | 3.94 | 6.96 | 25.49 | 51.18 |
S2 | 3.20 | 3.70 | 6.93 | 24.10 | 53.59 |
S3 | 3.19 | 3.47 | 6.56 | 23.78 | 54.14 |
S4 | 3.05 | 3.28 | 6.33 | 23.30 | 55.50 |
S5 | 3.00 | 3.13 | 6.10 | 23.13 | 57.08 |
S6 | 2.91 | 2.93 | 5.82 | 22.80 | 58.14 |
S7 | 2.83 | 2.66 | 5.55 | 22.56 | 59.44 |
S8 | 2.74 | 2.47 | 5.32 | 22.27 | 60.63 |
S9 | 2.69 | 2.26 | 5.09 | 22.02 | 61.50 |
S10 | 2.58 | 2.07 | 4.78 | 21.81 | 62.65 |
S11 | 2.49 | 1.85 | 4.46 | 21.45 | 64.01 |
Table 1 Concentrations of five considered components in cement CRMs
Sample | Mass fraction(%) | ||||
---|---|---|---|---|---|
Fe2O3 | MgO | Al2O3 | SiO2 | CaO | |
S1 | 3.31 | 3.94 | 6.96 | 25.49 | 51.18 |
S2 | 3.20 | 3.70 | 6.93 | 24.10 | 53.59 |
S3 | 3.19 | 3.47 | 6.56 | 23.78 | 54.14 |
S4 | 3.05 | 3.28 | 6.33 | 23.30 | 55.50 |
S5 | 3.00 | 3.13 | 6.10 | 23.13 | 57.08 |
S6 | 2.91 | 2.93 | 5.82 | 22.80 | 58.14 |
S7 | 2.83 | 2.66 | 5.55 | 22.56 | 59.44 |
S8 | 2.74 | 2.47 | 5.32 | 22.27 | 60.63 |
S9 | 2.69 | 2.26 | 5.09 | 22.02 | 61.50 |
S10 | 2.58 | 2.07 | 4.78 | 21.81 | 62.65 |
S11 | 2.49 | 1.85 | 4.46 | 21.45 | 64.01 |
Element | Wavelength of spectral lines*/nm |
---|---|
Fe | 356.538(I), 357.010(I), 358.119(I), 360.886(I), 361.877(I), 367.991(I), 370.557(I), 372.256(I), 373.332(I), 373.486(I), 373.713(I), 374.556(I), 374.826(I), 374.949(I), 375.823(I), 376.379(I), 381.584(I), 382.042(I), 382.444(I), 382.588(I), 382.782(I), 383.422(I), 385.637(I), 385.991(I), 388.628(I), 392.291(I), 392.792(I), 393.030(I), 404.581(I), 406.359(I), 407.174(I), 427.176(I), 432.576(I), 438.354(I), 440.475(I), |
Mg | 279.552(II), 382.936(I),383.230(I), 517.268(I), 518.360(I), |
Al | 394.400(I), 396.140(I) |
Si | 250.69(I), 251.432(I), 251.611(I), 251.920(I), 252.851(I), 288.158(I) |
Ca | 397.371(I), 428.301(I), 428.936(I), 429.899(I), 430.253(I), 430.774(I), 431.865(I), 442.544(I), 443.496(I), 445.478(I), 458.587(I), 487.813(I), 518.885(I), 534.947(I), 558.197(I), 558.876(I), 559.447(I), 559.849(I), 560.129(I), 585.745(I) |
Table 2 All spectral lines for OPC, SSC and PS-SSC methods
Element | Wavelength of spectral lines*/nm |
---|---|
Fe | 356.538(I), 357.010(I), 358.119(I), 360.886(I), 361.877(I), 367.991(I), 370.557(I), 372.256(I), 373.332(I), 373.486(I), 373.713(I), 374.556(I), 374.826(I), 374.949(I), 375.823(I), 376.379(I), 381.584(I), 382.042(I), 382.444(I), 382.588(I), 382.782(I), 383.422(I), 385.637(I), 385.991(I), 388.628(I), 392.291(I), 392.792(I), 393.030(I), 404.581(I), 406.359(I), 407.174(I), 427.176(I), 432.576(I), 438.354(I), 440.475(I), |
Mg | 279.552(II), 382.936(I),383.230(I), 517.268(I), 518.360(I), |
Al | 394.400(I), 396.140(I) |
Si | 250.69(I), 251.432(I), 251.611(I), 251.920(I), 252.851(I), 288.158(I) |
Ca | 397.371(I), 428.301(I), 428.936(I), 429.899(I), 430.253(I), 430.774(I), 431.865(I), 442.544(I), 443.496(I), 445.478(I), 458.587(I), 487.813(I), 518.885(I), 534.947(I), 558.197(I), 558.876(I), 559.447(I), 559.849(I), 560.129(I), 585.745(I) |
Performance index | Component | Origin | OPC | SSC | PS⁃SSC | Performance index | Component | Origin | OPC | SSC | PS⁃SSC |
---|---|---|---|---|---|---|---|---|---|---|---|
R2 | Fe2O3 | -1.23 | 0.40 | 0.67 | 0.86 | ARE(%) | SiO2 | 12.80 | 11.09 | 9.20 | 5.83 |
MgO | 0.61 | 0.69 | 0.72 | 0.85 | CaO | 11.15 | 6.82 | 3.53 | 1.55 | ||
Al2O3 | -0.64 | -0.17 | 0.66 | 0.80 | ARSD(%) | Fe2O3 | 8.32 | 4.69 | 5.56 | 4.36 | |
SiO2 | -5.97 | -6.08 | -0.81 | 0.39 | MgO | 15.24 | 5.10 | 9.41 | 4.49 | ||
CaO | -4.04 | 0.24 | 0.81 | 0.88 | Al2O3 | 12.50 | 7.59 | 6.22 | 6.50 | ||
ARE(%) | Fe2O3 | 11.48 | 7.13 | 4.39 | 2.81 | SiO2 | 11.07 | 2.98 | 5.16 | 3.63 | |
MgO | 12.68 | 8.26 | 10.33 | 5.29 | CaO | 7.67 | 3.45 | 2.89 | 2.28 | ||
Al2O3 | 17.52 | 14.29 | 10.15 | 5.14 |
Table 3 Comparison of performance indexes of different methods
Performance index | Component | Origin | OPC | SSC | PS⁃SSC | Performance index | Component | Origin | OPC | SSC | PS⁃SSC |
---|---|---|---|---|---|---|---|---|---|---|---|
R2 | Fe2O3 | -1.23 | 0.40 | 0.67 | 0.86 | ARE(%) | SiO2 | 12.80 | 11.09 | 9.20 | 5.83 |
MgO | 0.61 | 0.69 | 0.72 | 0.85 | CaO | 11.15 | 6.82 | 3.53 | 1.55 | ||
Al2O3 | -0.64 | -0.17 | 0.66 | 0.80 | ARSD(%) | Fe2O3 | 8.32 | 4.69 | 5.56 | 4.36 | |
SiO2 | -5.97 | -6.08 | -0.81 | 0.39 | MgO | 15.24 | 5.10 | 9.41 | 4.49 | ||
CaO | -4.04 | 0.24 | 0.81 | 0.88 | Al2O3 | 12.50 | 7.59 | 6.22 | 6.50 | ||
ARE(%) | Fe2O3 | 11.48 | 7.13 | 4.39 | 2.81 | SiO2 | 11.07 | 2.98 | 5.16 | 3.63 | |
MgO | 12.68 | 8.26 | 10.33 | 5.29 | CaO | 7.67 | 3.45 | 2.89 | 2.28 | ||
Al2O3 | 17.52 | 14.29 | 10.15 | 5.14 |
1 | Tsamatsoulis D., WSEAS Transactions on Systems and Control, 2011, 6, 239 |
2 | Tyopine A. A., Wangum A. J., Idoko E. A., Am. J. Anal. Chem., 2015, 6(05), 492 |
3 | Mas J. L., Aparicio P., Galán E., Romero⁃Baena A., Miras A., Yuste A., Martín D., Applied Clay Science, 2020, 196, 105736 |
4 | Grebneva⁃Balyuk O. N., Kubrakova I. V., Tyutyunnik O. A., Lapshin S. Y., Pryazhnikov D. V., J. Anal. Chem., 2021, 76, 306—314 |
5 | Zhong T., Yang M. L., Pei M. R., Zhang X. L., Le C. G., Wang G. C., Chen H. W., Chem J. Chinese Universities, 2016, 37(1), 26—30 |
钟涛, 杨美玲, 裴妙荣, 张兴磊, 乐长高, 王广才, 陈焕文.高等学校化学学报, 2016, 37(1), 26—30 | |
6 | Sheng L., Zhang T., Wang K., Tang H., Li H., Chem. Res. Chinese Universities, 2015, 31(1), 107—111 |
7 | Pedarnig J. D., Trautner S., Grünberger S., Giannakaris N., Eschlböck⁃Fuchs S., Hofstadler J., Appl. Sci., 2021, 11(19), 9274 |
8 | Anabitarte F., Cobo A., Lopez⁃Higuera J. M., ISRN Spectroscopy, 2012, 2012, 285240 |
9 | Zhang X., Daowen C., Deshan G., Linmao L., Wang M., 2009 4th International Conference on Computer Science & Education, 2009, 464—468 |
10 | Zadeh E. E., Sadighzadeh A., Salehizadeh A., Nazemi E., Roshani G. H., Anal. Methods, 2016, 8(11), 2510—2514 |
11 | Low F., Zhang L., Talanta, 2012, 101, 346—352 |
12 | Machado R. C., Andrade D. F., Babos D. V., Castro J. P., Costa V. C., Sperança M. A., Garcia J. A., Gamela R. R., Pereira⁃Filho E. R., J. Anal. Atom. Spectro., 2020, 35(1), 54—77 |
13 | Sing R., Spectrochimica Acta Part B: Atomic Spectroscopy, 1999, 54(3), 411—441 |
14 | Chan G. C. Y., Fan M. N., Chan W. T., Spectrochimica Acta B: Atomic Spectroscopy, 2001, 56(1), 13—25 |
15 | Durrant S. F., J. Anal. Atom. Spectro., 1999, 14(9), 1385—1403 |
16 | Schenk E. R., Almirall J. R., Forensic Science International, 2012, 217(1), 222—228 |
17 | Luo T., Wang Y., Li M., Zhang W., Chen H., Hu Z., Atomic Spectroscopy, 2020, 41(1), 11—19 |
18 | Zeng L., Wu M., Chen S., Zheng R., Rao Y., He X., Duan Y., Wang X., Talanta, 2022, 246, 123516 |
19 | Kehden A., Flock J., Vogel W., Broekaert J. A. C., Applied Spectroscopy, 2001, 55(10), 1291—1296 |
20 | Kuptsov A. V., Volzhenin A. V., Labusov V. A., Saprykin A. I., Spectrochimica Acta B: Atomic Spectroscopy, 2021, 177, 106047 |
21 | Li L., Hu B., Talanta, 2007, 72(2), 472—479 |
22 | Vogt T., Bauer D., Neuroth M., Otto M., Fuel, 2015, 152, 96—102 |
23 | Wohlmann W., Neves V. M., Heidrich G. M., Silva J. S., Da Costa A. B., Paniz J. N. G., Dressler V. L., Spectrochimica Acta B: Atomic Spectroscopy, 2018, 149, 222—228 |
24 | Althobiti R. A., Beauchemin D., J. Anal. Atom. Spectro., 2021, 36(3), 535—539 |
25 | Mujuru M., Mccrindle R. I., Panichev N., J. Anal. Atom. Spectro., 2009, 24(4), 494—501 |
26 | Barałkiewicz D., Hanć A., Gramowska H., Inter. J. Environ. Anal. Chem., 2010, 90(14/15), 1025—1035 |
27 | Tong R., Guo W., RSC Adv., 2019, 9(56), 32435—32440 |
28 | Yuan J., Feng S., Cui J., Sun S., Yu A., Chang Y., J. Iran. Chem. Soc., 2022, 19, 589—597 |
29 | Zhang X. L., Yuan X. Y., Xu J. Q., Le C. G., Chen H. W., J. Chinese Mass Spectro. Soc., 2022, 43(6), 768—781 |
张兴磊, 原雪燕, 徐加泉, 乐长高, 陈焕文.质谱学报, 2022, 43(6), 768—781 | |
30 | Ebdon L. E. S., Foulkes M., Sutton K., J. Anal. Atom. Spectro., 1997, 12(2), 213—229 |
31 | Isoyama H., Uchida T., Nagashima T., Ohira O., J. Anal. Atom. Spectro., 2004, 19(10), 1370—1374 |
32 | Jin W., Yu B. W., Zhu D., Ying Y. W., Yu H. X., Jin Q. H., Chem J. Chinese Universities, 2015, 36(11), 2157—2159 |
金伟, 于丙文, 朱旦, 应仰威, 于海翔, 金钦汉.高等学校化学学报, 2015, 36(11), 2157—2159 | |
33 | Yu B. W., Jin W., Ying Y. W., Yu H., Zhu D., Shan J., Liu W., Xu C., Jin Q. H., J. Anal. Atom. Spectro., 2016, 31(3), 759—766 |
34 | Yu D., Wei H., Li Y., Shao Y., Jin W., Yu B., J. Anal. Atom. Spectro., 2023, 38(7), 1402—1411 |
35 | Ciucci A., Corsi M., Palleschi V., Rastelli S., Salvetti A., Tognoni E., Appl. Spectro., 1999, 53(8), 960—964 |
36 | de Giacomo A., Dell’aglio M., de Pascale O., Gaudiuso R., Teghil R., Santagata A., Parisi G. P., Applied Surface Science, 2007, 253(19), 7677—7681 |
37 | Tognoni E., Cristoforetti G., Legnaioli S., Palleschi V., Salvetti A., Mueller M., Panne U., Gornushkin I., Spectrochimica Acta B: Atomic Spectroscopy, 2007, 62(12), 1287—1302 |
38 | Gaudiuso R., Dell'aglio M., de Pascale O., Santagata A., de Giacomo A., Spectrochimica Acta B: Atomic Spectroscopy, 2012, 74/75, 38—45 |
39 | Kolmhofer P. J., Eschlböck⁃Fuchs S., Huber N., Rössler R., Heitz J., Pedarnig J D., Spectrochimica Acta B: Atomic Spectroscopy, 2015, 106, 67—74 |
40 | Alrebdi T. A., Fayyaz A., Asghar H., Zaman A., Asghar M., Alkallas F. H., Hussain A., Iqbal J., Khan W., Molecules, 2022, 27(12), 3754 |
41 | Cavalcanti G. H., Teixeira D. V., Legnaioli S., Lorenzetti G., Pardini L., Palleschi V., Spectrochimica Acta B: Atomic Spectroscopy, 2013, 87, 51—56 |
42 | Bai X., Hai R., He Z., Wang X., Wu D., Li C., Tong W., Wu H., Xu G., Dong D., Hu Z., Ding H., J. Anal. Atom. Spectro., 2022, 37(2), 289—295 |
43 | Yuan R., Tang Y., Zhu Z., Hao Z., Li J., Yu H., Yu Y., Guo L., Zeng X., Lu Y.. Analy. Chim. Acta, 2019, 1064, 11—16 |
44 | Aragón C., Aguilera J. A., Spectrochimica Acta B: Atomic Spectroscopy, 2008, 63(9), 893—916 |
[1] | YAN Yuwei,JIN Wei,ZHU Dan,ZHANG Tao,YING Yangwei,SHAN Jin,ZHANG Xuchen,YU Bingwen,CHEN Ting,LIU Chao,JIN Qinhan. Application of Kilowatt MPT-AES in Oil Analysis† [J]. Chem. J. Chinese Universities, 2018, 39(12): 2651. |
[2] | LI Jiahui, ZHANG Qikai, ZHAO Shanlin, LI Ping. Sensitization for Determination of Iron by Microwave Plasma Torch Atomic Emission Spectrometry† [J]. Chem. J. Chinese Universities, 2017, 38(4): 547. |
[3] | WANG Xinchen, YANG Meiling, ZHANG Xiaoping. Rapid Qualitative Analysis of Active Molecules in Tablets Using Microwave Plasma Torch Mass Spectrometry by the Regulation of Power† [J]. Chem. J. Chinese Universities, 2017, 38(4): 561. |
[4] | XIONG Xiaohong, ZHANG Yan, ZHOU Runzhi, WANG Shangxian, JIANG Tao, ZENG Bin, QI Wenhao, ZHU Zhiqiang. Detection of Common Transition Metal in Water by Microwave Plasma Torch Mass Spectra in Negative Ion Mode† [J]. Chem. J. Chinese Universities, 2016, 37(5): 867. |
[5] | ZHONG Tao, YANG Meiling, PEI Miaorong, ZHANG Xinglei, LE Zhanggao, WANG Guangcai, CHEN Huanwen. Determination of Trace-amount Calcium in Drinking Water by Microwave Plasma Torch Mass Spectrometry† [J]. Chem. J. Chinese Universities, 2016, 37(1): 26. |
[6] | JIN Wei, YU Bingwen, ZHU Dan, YING Yangwei, YU Haixiang, JIN Qinhan. Development of a New Kilowatt Microwave Plasma Torch(kW-MPT) Excitation Source for Atomic Emission Spectrometry† [J]. Chem. J. Chinese Universities, 2015, 36(11): 2157. |
[7] | SHI Yu-Hua*, WU Li-Hang, LI Hong-Mei, YU Ai-Min, ZHANG Han-Qi, JIN Qin-Han. Microwave Plasma Torch Double Detector System and It's Response Characteristics for Gas Chromatography [J]. Chem. J. Chinese Universities, 2007, 28(10): 1842. |
[8] | ZHANG Jin-Sheng, LI Li-Hua, ZHANG Jin-Ping, JIN Qin-Han. Determination of Trace Lead in Unleaded Gasoline by Microwave Digestion-Microwave Plasma Torch Atomic Emission Spectrometry [J]. Chem. J. Chinese Universities, 2004, 25(7): 1248. |
[9] | ZHOU Jian-Guang, PENG Zeng-Hui, HUAN Yan-Fu, YU Ai-Min, JIN Qin-Han, ZHOU Xiang, LIU Mei . An Investigation on Effect of Desolvation System on Analytical Performance of MPT-AES [J]. Chem. J. Chinese Universities, 2002, 23(7): 1273. |
[10] | ZHAO Li-Wei, FU Yao, SONG Da-Qian, ZHANG Han-Qi, JIN Qin-Han . A Study of the Coupling Position of the Microwave Plasma Torch [J]. Chem. J. Chinese Universities, 2001, 22(2): 201. |
[11] | SHI Yu-Hua, LIU Miao, CAO Yan-Bo, PENG Zeng-Hui, SONG Qing-Yu, WU Li-Hang, YU Ai-Min, JIN Qin-Han . Gas Chromatography with Microwave Plasma Torch Atomic Emission Spectrometry Detector for the Determination of Sn, P, Si and B [J]. Chem. J. Chinese Universities, 2000, 21(11): 1642. |
[12] | SHI Yu-Hua, YANG Wen-Jun, YU Ai-Min, CAO Yan-Bo, JIN Qin-Han . Studies on Microwave Plasma Torch Atomic Emission Detector and Its Response Characteristics for Gas Chromatography [J]. Chem. J. Chinese Universities, 1998, 19(11): 1739. |
[13] | LIANG Feng, ZHAO Li-Wei, ZHANG Han-Qi, JIN Qin-Han . A Simple Thermospray System Used in Microwave Plasma Torch Atomic Emission Spectrometry [J]. Chem. J. Chinese Universities, 1997, 18(7): 1031. |
[14] | ZHANG Han-Qi, LIANG Feng, ZHAO Xiao-Jun, LI Yong, JING Qin-Han, WANG Da-Ning, ZOU Ming-Qiang, JIA Rui. An Investigation on Analytical Performance of Microwave Plasma Torch with a Pneumatic Nebulization Sample Introduction System [J]. Chem. J. Chinese Universities, 1996, 17(9): 1377. |
[15] | ZHANG Han-Qi, WANG Ying, YE Dong-Mei, LIANG Feng, JIN Qin-Han . An Investigation on Analytical Peformance of Microwave Plasma Obtained with Surfatron and Microwave Plasma Torch [J]. Chem. J. Chinese Universities, 1995, 16(4): 532. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||