Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (9): 2996.doi: 10.7503/cjcu20210131
• Materials Chemistry • Previous Articles
JIANG Liqi1, WEI Ke1, WANG Lang1, XIAO Houdi2, YANG Jiuxiang1, HU Zhiyi1, LIU Jing1, LI Yu1(), LYU Mingyun2(
), SU Baolian1
Received:
2021-03-01
Online:
2021-09-10
Published:
2021-09-08
Contact:
LI Yu,LYU Mingyun
E-mail:yu.li@whut.edu.cn;lv503@buaa.edu.cn
Supported by:
CLC Number:
TrendMD:
JIANG Liqi, WEI Ke, WANG Lang, XIAO Houdi, YANG Jiuxiang, HU Zhiyi, LIU Jing, LI Yu, LYU Mingyun, SU Baolian. Electrochromic Property of the WO3/PANI Core-Shell Inverse Opal Structure Film[J]. Chem. J. Chinese Universities, 2021, 42(9): 2996.
Sample | Preparation method | Response time/s | CE/(cm2·C-1) | Ref. | |
---|---|---|---|---|---|
Coloring | Bleaching | ||||
One layer IO?WO3 film | Langmuir?Blodgett method | 9.6 | 9.6 | 75.73 | [ |
WO3 crystalline nanoparticles | Electro?deposition | 9 | 15 | 51 | [ |
Amorphous porous WO3 film | Magnetron sputtering | 19 | 6 | 129.1 | [ |
WO3·H2O nanosheets | Hydrothermal | 10.1 | 6.1 | 42.6 | [ |
MoO3?WO3 film | Sol?gel method | 36 | 32 | 146.95 | [ |
WO3 nanorods | Sol?gel method | 4.5 | 1.2 | ─ | [ |
Mo?doped WO3 nanoparticles | Solvothermal method | 6.3 | 3.9 | 107.2 | [ |
IO?WO3 film | Hard template method | 8.5 | 14.7 | 181.7 | This wok |
IO?WO3/PANI film | SILAR | 3.8 | 6.14 | 201.1 | This wok |
Sample | Preparation method | Response time/s | CE/(cm2·C-1) | Ref. | |
---|---|---|---|---|---|
Coloring | Bleaching | ||||
One layer IO?WO3 film | Langmuir?Blodgett method | 9.6 | 9.6 | 75.73 | [ |
WO3 crystalline nanoparticles | Electro?deposition | 9 | 15 | 51 | [ |
Amorphous porous WO3 film | Magnetron sputtering | 19 | 6 | 129.1 | [ |
WO3·H2O nanosheets | Hydrothermal | 10.1 | 6.1 | 42.6 | [ |
MoO3?WO3 film | Sol?gel method | 36 | 32 | 146.95 | [ |
WO3 nanorods | Sol?gel method | 4.5 | 1.2 | ─ | [ |
Mo?doped WO3 nanoparticles | Solvothermal method | 6.3 | 3.9 | 107.2 | [ |
IO?WO3 film | Hard template method | 8.5 | 14.7 | 181.7 | This wok |
IO?WO3/PANI film | SILAR | 3.8 | 6.14 | 201.1 | This wok |
1 | Alesanco Y., Vinuales A., Rodriguez J., Tena⁃Zaera R., Materials (Basel), 2018, 11, 414 |
2 | Beaujuge P. M., Ellinger S., Reynolds J. R., Nat. Mater., 2008, 7, 795―799 |
3 | Ozkut M. I., Atak S., Onal A. M., Cihaner A., J. Mater. Chem. A, 2011,21, 5268―5272 |
4 | Zhang X., Steckler T. T., Dasari R. R., Ohira S., Potscavage W. J. Jr., Tiwari S. P., Coppee S., Ellinger S., Barlow S., Bredas J. L., Kippelen B., Reynolds J. R., Marder S. R., J. Mater. Chem., 2010, 20, 123―134 |
5 | Balaji S., Djaoued Y., Albert A. S., Bruening R., Beaudoin N., Robichaud J., J. Mater. Chem., 2011,21, 3940―3948 |
6 | Lee S. H., Deshpande R., Parilla P. A., Jones K. M., To B., Mahan A. H., Dillon A. C., Adv. Mater., 2006, 18, 763―766 |
7 | Zhang J., Wang X. L., Xia X. H., Gu C. D., Zhao Z. J., Tu J. P., Electrochim. Acta, 2010, 55, 6953―6958 |
8 | Amb C. M., Dyer A. L., Reynolds J. R., Chem. Mater., 2011, 23, 397―415 |
9 | Kreyes A., Amirkhani M., Lieberwirth I., Mauer R., Laquai F., Landfester K., Ziener U., Chem. Mater., 2010, 22, 6453―6458 |
10 | Bhadra S., Khastgir D., Singha N. K., Lee J. H., Prog. Polym. Sci., 2009, 34, 783―810 |
11 | Bessière A., Duhamel C., Badot J. C., Lucas V., Certiat M. C., Electrochim. Acta, 2004, 49, 2051―2055 |
12 | Radoicic M., Saponjic Z., Ciric-Marjanovic G., Konstantinovic Z., Mitric M., Nedeljkovic J., Polymer Composites, 2012, 33, 1482―1493 |
13 | Shi Y. D., Zhang Y., Tang K., Cui J. W., Shu X., Wang Y., Liu J. Q., Jiang Y., Tan H. H., Wu Y. C., Chem. Eng. J., 2019, 355, 942―951 |
14 | Zhang J., Tu J. P., Zhang D., Qiao Y. Q., Xia X. H., Wang X. L., Gu C. D., J. Mater. Chem., 2011, 21, 17316―17324 |
15 | Wang C., Wang L., Jin J., Liu J., Li Y., Wu M., Chen L. H., Wang B. J., Yang X. Y., Su B. L., Applied Catalysis B⁃Environmental, 2016, 188, 351―359 |
16 | Cai G. F., Tu J. P., Zhou D., Zhang J. H., Wang X. L., Gu C. D., Sol. Energy Mater. Sol. Cells, 2014, 122, 51―58 |
17 | Zhu J., Wei S., Zhang L., Mao Y., Ryu J., Karki A. B., Young D. P., Guo Z., J. Mater. Chem., 2011, 21, 342―348 |
18 | Zhang J., Tu J. P., Du G. H., Dong Z. M., Wu Y. S., Chang L., Xie D., Cai G. F., Wang X. L., Sol. Energy Mater. Sol. Cells, 2013,114, 31―37 |
19 | Quan L. N., Jang Y. H., Stoerzinger K. A., May K. J., Jang Y. J., Kochuveedu S. T., Shao⁃Horn Y., Kim D. H., Phys. Chem. Chem. Phys., 2014, 16, 9023―9030 |
20 | Patil B. H., Jang K., Lee S., Kim J. H., Yoon C. S., Kim J., Kim D. H., Ahn H., J. Alloys Compd., 2017, 694, 111―118 |
21 | Zhao H., Wang C., Vellacheri R., Zhou M., Xu Y., Fu Q., Wu M., Grote F., Lei Y., Adv. Mater., 2014, 26, 7654―7659 |
22 | Wei C., Pang H., Cheng C., Zhao J., Li P., Zhang Y., Crystengcomm, 2014, 16, 4169―4175 |
23 | Dubal D. P., Patil S. V., Gund G. S., Lokhande C. D., J. Alloys Compd., 2013, 552, 240―247 |
24 | Zhang R. L., Wang C., Chen H., Zhao H., Liu J., Li Y., Su B. L., Acta Physico⁃Chimica Sinica, 2020, 36(3), 1803014(张若兰, 王超, 陈浩, 赵恒, 刘婧, 李昱,苏宝连, 物理化学学报, 2020, 36(3), 1803014) |
25 | Zhang J., Tu J. P., Xia X. H., Wang X. I., Gu C. D., J. Mater. Chem., 2011, 21, 5492―5498 |
26 | Zhu J., Wei S., Alexander M., Jr., Dang T. D., Ho T. C., Guo Z., Adv. Funct. Mater., 2010, 20, 3076―3084 |
27 | Cai G., Tu J., Zhou D., Zhang J., Xiong Q., Zhao X., Wang X., Gu C., J. Phys. Chem. C, 2013, 117, 15967―15975 |
28 | Yang G., Takei T., Yanagida S., Kumada N., Appl. Surf. Sci., 2019, 498, 143872―143887 |
29 | Granqvist C. G., Adv. Mater., 2003,15, 1789―1803 |
30 | Zhang L., Wang B., Li X., Xu G., Dou S., Zhang X., Chen X., Zhao J., Zhang K., Li Y., J. Mater. Chem. C, 2019, 7, 9878―9891 |
31 | Granqvist C. G., J. Eur. Ceram. Soc., 2005, 25, 2907―2912 |
32 | Cai G. F., Tu J. P., Gu C. D., Zhang J. H., Chen J., Zhou D., Shi S. J., Wang X. L., J. Mater. Chem. A, 2013, 1, 4286―4292 |
33 | Wei H., Zhu J., Wu S., Wei S., Guo Z., Polymer, 2013, 54, 1820―1831 |
34 | Yang H., Yu J. H., Jeong R. H., Boo J. H., Thin Solid Films, 2018, 660, 596―600 |
35 | Liu L., Layani M., Yellinek S., Kamyshny A., Ling H., Lee P. S., Magdassi S., Mandler D., J. Mater. Chem. A, 2014, 2, 16224―16229 |
36 | Louloudakis D., Mouratis K., Gil-Rostra J., Koudoumas E., Alvarez R., Palmero A., Gonzalez-Elipe A. R., Electrochim. Acta, 2021,376, 138049―138058 |
37 | Bi Z., Li X., He X., Chen Y., Xu X., Gao X., Sol. Energy Mater. Sol. Cells, 2018, 183, 59―65 |
38 | Jittiarporn P., Sikong L., Kooptarnond K., Taweepreda W., Stoenescu S., Badilescu S., Truong V. V., Surface & Coatings Technology, 2017, 327, 66―74 |
39 | Yuan G. Z., Hua C. Z., Khan S., Jiang S. S., Wu Z. Z., Liu Y., Wang J. X., Song C. L., Han G. R., Electrochim. Acta, 2018,260, 274―280 |
40 | Liu Y., Wang J., Xiao X., Cai X., Sheng G., Xu G., Ceram. Int., 2021, 47, 7837―7844 |
41 | Cai G. F., Tu J. P., Zhang J., Mai Y. J., Lu Y., Gu C. D., Wang X. L., Nanoscale, 2012, 4, 5724―5730 |
42 | Bi Z. J., Li X. M., Chen Y. B., Xu X. K., Zhang S. D., Zhu Q. X., Electrochim. Acta, 2017, 227, 61―68 |
43 | Cai G. F., Tu J. P., Zhou D., Li L., Zhang J. H., Wang X. L., Gu C. D., Crystengcomm, 2014, 16, 6866―6872 |
44 | Koo B. R., Kim K. H., Ahn H. J., Appl. Surf. Sci., 2018, 453, 238―244 |
[1] | HUANG Rui,YAO Zhilong,SUN Peiyong,ZHANG Shenghong. Effect of Structure and Properties of CuO-WO3-ZrO2 on Hydrogenation Catalytic of Benzaldehyde† [J]. Chem. J. Chinese Universities, 2019, 40(5): 1005. |
[2] | DAN Yuanyuan, ZHANG Li, CHEN Lizhuang, YUE Huijuan, LIN Haibo, LU Haiyan. Preparation of PbO2+nano-WO3 Composite Electrode on Ti Substrate by Composite Electrodeposition and Its Oxygen Evolution Activity† [J]. Chem. J. Chinese Universities, 2014, 35(12): 2632. |
[3] | LI Yue-Jun, CAO Tie-Ping, SHAO Chang-Lu, WANG Chang-Hua. Preparation and Energy Stored Photocatalytic Properties of WO3/TiO2 Composite Fibers [J]. Chem. J. Chinese Universities, 2012, 33(07): 1552. |
[4] | CHEN Li-Xian, WENG Shao-Huang, ZHOU Jian-Zhang*, LIN Zhong-Hua. Preparation of Solid-state Multicolor Electrochromic Devices Based on Conducting Polymers [J]. Chem. J. Chinese Universities, 2010, 31(4): 790. |
[5] | SHEN Yi1*, ZHU Hua1, ZHAO Li2, HUANG Rong1, HU Guo-Hua1. Synthesis and Photochromic Properties of 1-Propanol Induced WO3 Powder [J]. Chem. J. Chinese Universities, 2008, 29(9): 1712. |
[6] | SHI Ji-Chao2, WU Guang-Ming1*, CHEN Shi-Wen1, SHEN Jun1, ZHOU Bin1, NI Xing-Yuan1. Effect of Annealing Temperature on Structure and Gaschromic Properties of WO3 Thin Films [J]. Chem. J. Chinese Universities, 2007, 28(7): 1356. |
[7] | PAN Xiao-Xia, SUI Yu, XU Hong-Jie, YIN Jie, MA Xiao-Dong, ZHU Zi-Kang, WANG Zong-Guang . Synthesis and Characterization of a Second-order Nonlinear Optical Organic/Inorganic Polyimide Hybrid Material [J]. Chem. J. Chinese Universities, 2002, 23(8): 1618. |
[8] | SUN Wen-Dong, ZHAO Zhen-Bo, CHU Wen-Ling, GUO Chuan, YE Xing-Kai, WU Yue . Studies on the Alkylation of Isobutane with Butene over WO3/ZrO2 Strong Solid Acid(Ⅰ)──Effect of Preparation, Load of WO3 and Calcination Temperature [J]. Chem. J. Chinese Universities, 2000, 21(3): 448. |
[9] | GAO Zi, CHEN Jian-Min, YAO Yu-Ning, HUA Wei-Ming, MIAO Chang-Xi. Studies on WO3/ZrO2and MoO3/ZrO2Solid Superacid Sytems [J]. Chem. J. Chinese Universities, 1995, 16(1): 111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||